Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Importance of Polynomial Reproduction in Piecewise-Uniform Subdivision

  • Conference paper
Mathematics of Surfaces XI

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3604))

Abstract

We survey a number of related methods, which have been published by the author and collaborators, in the field of subdivision schemes for curves and surfaces. The theory presented in these works relies mainly on the notion of polynomial reproduction, i.e. the ability of a scheme to reproduce all polynomials up to a certain degree as limit functions. We demonstrate that the study of polynomial reproduction is central to smoothness analysis and to approximation. In particular, we show how to exploit polynomial reproduction in the context of piecewise-uniform stationary subdivision. The applications include boundary treatments for subdivision surfaces, interpolation of curves by surfaces, subdivision stencils around extraordinary vertices (construction of C 2 schemes), as well as schemes that involve different kinds of grids (triangular / quadrilateral).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision. Memoirs of AMS, vol. 453. American Mathematical Society, Providence (1991)

    Google Scholar 

  2. Levin, A.: Polynomial generation and quasi-interpolation in stationary non-uniform subdivision. Computer Aided Geometric Design 20(1), 41–60 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Levin, A.: Combined Subdivision Schemes. PhD thesis, Tel-Aviv university (2000)

    Google Scholar 

  4. Levin, A., Levin, D.: Analysis of quasi-uniform subdivision. Applied and Computational Harmonic Analysis 15(1), 18–32 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Schaefer, S., Warren, J.: On c 2 triangle/quad subdivision. ACM Transactions on Graphics (2004) (accepted)

    Google Scholar 

  6. Stam, J., Loop, C.: Quad/triangle subdivision. Computer Graphics Forum 22(1), 79–85 (2003)

    Article  Google Scholar 

  7. Hakenberg, J.: Smooth subdivision for mixed volumetric meshes. Master’s thesis, Rice University, Department of Computer Science (2004)

    Google Scholar 

  8. Zulti, A., Levin, A., Levin, D., Teicher, M.: c 2 subdivision over triangulations with one extraordinary point. Computer Aided Geometric Design (2004) (to appear)

    Google Scholar 

  9. Reif, U.: A unified approach to subdivision algorithms near extraordinary points. Computer Aided Geometric Design 12, 153–174 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Warren, J., Weimer, H.: Subdivision Methods for Geometric Design. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  11. Zorin, D.: Smoothness of stationary subdivision on irregular meshes (1998) (preprint )

    Google Scholar 

  12. Levin, A.: Interpolating nets of curves by smooth subdivision surfaces. In: Proceedings of SIGGRAPH 1999, Computer Graphics Proceedings. Annual Conference Series, pp. 57–64 (1999)

    Google Scholar 

  13. Levin, A.: Filling n-sided holes using combined subdivision schemes. In: Laurent, P.J., Sablonniere, P., Schumaker, L.L. (eds.) Curve And Surface Design, pp. 221–228. Vanderbilt University Press, Nashville (1999)

    Google Scholar 

  14. Dyn, N.: Subdivision schemes in computer aided geometric design. In: Light, W.A. (ed.) Advances in Numerical Analysis II, Subdivision algorithms and radial functions, pp. 36–104. Oxford University Press, Oxford (1992)

    Google Scholar 

  15. Dyn, N., Greogory, J.A., Levin, D.: Piecewise uniform subdivision schemes. In: Dahlen, M., Lyche, T., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 111–120. Vanderbilt University Press, Nashville (1995)

    Google Scholar 

  16. Ron, A.: Wavelets and their associated operators. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory IX, pp. 283–317. Vanderbilt University Press, Nashville (1998)

    Google Scholar 

  17. de Boor, C.: Quasiinterpolants and approximation power of multivariate splines. In: Gasca, M., Michelli, C.A. (eds.) Computation of curves and surfaces, pp. 313–345. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  18. de Boor, C., Ron, A.: The exponentials in the span of the multiinteger translates of a compactly supported function: quasiinterpolation and approximation order. Journal of London Mathematical Society 45(2), 519–535 (1992)

    Article  Google Scholar 

  19. Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., Stuetzle, W.: Piecewise smooth surface reconstruction. Computer graphics 28(3), 295–302 (1994)

    Google Scholar 

  20. Schweitzer, J.: Analysis and Applications of Subdivision Surfaces. PhD thesis, University of Washington, Seattle (1996)

    Google Scholar 

  21. Biermann, H., Levin, A., Zorin, D.: Piecewise smooth subdivision surfaces with normal control. In: Proceedings of SIGGRAPH 2000, Computer Graphics Proceedings. Annual Conference Series, pp. 113–120 (2000)

    Google Scholar 

  22. Levin, A.: Combined subdivision schemes for the design of surfaces satisfying boundary conditions. Computer Aided Geometric Design 16(5), 345–354 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Daubechies, I., Guskov, I., Sweldens, W.: Regularity of irregular subdivision. Constructive Approximation 15, 381–426 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. de Boor, C.: Cutting corners always works. Computer Aided Geometric Design 4, 125–131 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dyn, N., Greogory, J.A., Levin, D.: A four-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4, 257–268 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation. Constructive Approximation 5, 49–68 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Computer Aided Design 10, 350–355 (1978)

    Article  Google Scholar 

  28. Loop, C.: Smooth spline surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics (1987)

    Google Scholar 

  29. Prautzsch, H., Umlauf, G.: A g 2 subdivision algorithm. In: Farin, G., Bieri, H., Brunnet, G., DeRose, T. (eds.) Geometric Modeling, Computing Supplements, pp. 217–224. Springer, New York (1998)

    Google Scholar 

  30. Prautzsch, H., Reif, U.: Degree estimates of c k piecewise polynomial subdivision surfaces. Advances in Computational Mathematics 10, 209–217 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Prautzsch, H.: Freeform splines. Computer Aided Geometric Design 14, 201–206 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Reif, U.: Turbs: Topologically unrestricted b-splines. Constructive Approximation 4, 55–77 (1998)

    MathSciNet  Google Scholar 

  33. Zulti, A., Levin, A., Levin, D., Taicher, M.: An electronic appendix to the paper: c2 subdivision over triangulations with one extraordinary point (2004), http://www.math.tau.ac.il/~levin/adi/zulti-levin_c2_sbd.htm

  34. Dyn, N., Greogory, J.A., Levin, D.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics 9, 160–169 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levin, A. (2005). The Importance of Polynomial Reproduction in Piecewise-Uniform Subdivision. In: Martin, R., Bez, H., Sabin, M. (eds) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol 3604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537908_17

Download citation

  • DOI: https://doi.org/10.1007/11537908_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28225-9

  • Online ISBN: 978-3-540-31835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics