Abstract
Given a forest F = (V,E) and a positive integer D, we consider the problem of finding a minimum number of new edges E′ such that in the augmented graph H = (V,E ∪ E′) any pair of vertices can be connected by two vertex-disjoint paths of length ≤ D. We show that this problem and some of its variants are NP-hard, and we present approximation algorithms with worst-case bounds 6 and 4.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Gyarfas, A., Ruszinko, M.: Decreasing the diameter of bounded degree graphs. J. Graph Theory 35, 161–172 (2000)
Chang, G.J.: Labeling algorithms for domination problems in sun-free chordal graphs. Discrete Appl. Math. 22, 21–34 (1988/1989)
Chepoi, V., Estellon, B., Nouioua, K., Vaxès, Y.: Mixted covering of trees and the augmentation problem with mixted integer constraints (submitted)
Chepoi, V., Vaxès, Y.: Augmenting trees to meet biconnectivity and diameter constraints. Algorithmica 33, 243–262 (2002)
Chung, F.R.K., Garey, M.R.: Diameter bounds for altered graphs. J. Graph Theory 8, 511–534 (1984)
Dolev, D., Halpern, J., Simons, B., Strong, H.R.: A new look at fault tolerant network routing. Information and Computation 72, 180–196 (1987)
Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Computing 5, 653–665 (1976)
Farley, A.M., Proskurowski, A.: Self-repairing networks. Parallel Processing Letters 3, 381–391 (1993)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)
Ishii, T., Yamamoto, S., Nagamochi, H.: Augmenting forests to meet odd diameter requirements. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 434–443. Springer, Heidelberg (2003)
Kant, G., Bodlaender, H.L.: Planar graph augmentation problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 286–298. Springer, Heidelberg (1991)
Ch, C.-L., McCormick, S.T., Simchi–Levi, D.: On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems. Operations Research Letters 11, 303–308 (1992)
Schoone, A.A., Bodlaender, H.L., van Leeuwen, J.: Diameter increase caused by edge deletion. J. Graph Theory 11, 409–427 (1987)
Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)
West, D.B.: Introduction to Graph Theory. Prentice Hall, London (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chepoi, V., Estellon, B., Vaxès, Y. (2005). Approximation Algorithms for Forests Augmentation Ensuring Two Disjoint Paths of Bounded Length. In: Dehne, F., López-Ortiz, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2005. Lecture Notes in Computer Science, vol 3608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11534273_25
Download citation
DOI: https://doi.org/10.1007/11534273_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28101-6
Online ISBN: 978-3-540-31711-1
eBook Packages: Computer ScienceComputer Science (R0)