Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximation Algorithms for Forests Augmentation Ensuring Two Disjoint Paths of Bounded Length

  • Conference paper
Algorithms and Data Structures (WADS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3608))

Included in the following conference series:

  • 1059 Accesses

Abstract

Given a forest F = (V,E) and a positive integer D, we consider the problem of finding a minimum number of new edges E′ such that in the augmented graph H = (V,EE′) any pair of vertices can be connected by two vertex-disjoint paths of length ≤ D. We show that this problem and some of its variants are NP-hard, and we present approximation algorithms with worst-case bounds 6 and 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Gyarfas, A., Ruszinko, M.: Decreasing the diameter of bounded degree graphs. J. Graph Theory 35, 161–172 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chang, G.J.: Labeling algorithms for domination problems in sun-free chordal graphs. Discrete Appl. Math. 22, 21–34 (1988/1989)

    Google Scholar 

  3. Chepoi, V., Estellon, B., Nouioua, K., Vaxès, Y.: Mixted covering of trees and the augmentation problem with mixted integer constraints (submitted)

    Google Scholar 

  4. Chepoi, V., Vaxès, Y.: Augmenting trees to meet biconnectivity and diameter constraints. Algorithmica 33, 243–262 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chung, F.R.K., Garey, M.R.: Diameter bounds for altered graphs. J. Graph Theory 8, 511–534 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dolev, D., Halpern, J., Simons, B., Strong, H.R.: A new look at fault tolerant network routing. Information and Computation 72, 180–196 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eswaran, K.P., Tarjan, R.E.: Augmentation problems. SIAM J. Computing 5, 653–665 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Farley, A.M., Proskurowski, A.: Self-repairing networks. Parallel Processing Letters 3, 381–391 (1993)

    Article  MathSciNet  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    Google Scholar 

  10. Ishii, T., Yamamoto, S., Nagamochi, H.: Augmenting forests to meet odd diameter requirements. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 434–443. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Kant, G., Bodlaender, H.L.: Planar graph augmentation problems. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 286–298. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  12. Ch, C.-L., McCormick, S.T., Simchi–Levi, D.: On the minimum-cardinality-bounded-diameter and the bounded-cardinality-minimum-diameter edge addition problems. Operations Research Letters 11, 303–308 (1992)

    Article  MathSciNet  Google Scholar 

  13. Schoone, A.A., Bodlaender, H.L., van Leeuwen, J.: Diameter increase caused by edge deletion. J. Graph Theory 11, 409–427 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

    Google Scholar 

  15. West, D.B.: Introduction to Graph Theory. Prentice Hall, London (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chepoi, V., Estellon, B., Vaxès, Y. (2005). Approximation Algorithms for Forests Augmentation Ensuring Two Disjoint Paths of Bounded Length. In: Dehne, F., López-Ortiz, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2005. Lecture Notes in Computer Science, vol 3608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11534273_25

Download citation

  • DOI: https://doi.org/10.1007/11534273_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28101-6

  • Online ISBN: 978-3-540-31711-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics