Abstract
A main goal of Formal Concept Analysis from its very beginning has been the support of rational communication. The source of this goal lies in the understanding of mathematics as a science which should encompass both its philosophical basis and its social consequences. This can be achieved by a process named ‘restructuring’. This approach shall be extended to logic, which is based on the doctrines of concepts, judgments, and conclusions. The program of restructuring logic is named Contextual Logic (CL). A main idea of CL is to combine Formal Concept Analysis and Concept Graphs (which are mathematical structures derived from conceptual graphs). Concept graphs mathematize judgments which combine concepts, and conclusions can be drawn by inferring concept graphs from others. So we see that concept graphs can be understood as a crucial part of the mathematical implementation of CL, based on Formal Concept Analysis as the mathematization of the doctrine of concepts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Apel, K.-O.: Begründung. In: Seifert, H., Radnitzky, G. (eds.) Handlexikon der Wissenschaftstheorie, pp. 14–19. Ehrenwirth, München (1989)
Arnold, M.: Einführung in die Relationenlogik. Diplomarbeit. FB Mathematik, TU Darmstadt (2002)
Barwise, J. (ed.): Handbook of Mathematical Logic. North–Holland Publishing Company, Amsterdam (1977)
Becker, P., Hereth Correia, J.: The ToscanaJ Suite for Implementing Conceptual Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)
Brandom, R.B.: Making it explicit. Reasoning, Representing, and Discursive Commitment. Harvard University Press, Cambridge (1994)
Brandom, R.B.: Begründen und Begreifen. Eine Einführung in den Inferentialismus. Suhrkamp (2001)
Dau, F.: Concept Graphs and Predicate Logic. In: Delugach, H.S., Stumme, G. (eds.) Conceptual Structures: Broadening the Base, pp. 72–86. Springer, Berlin (2001)
Dau, F.: The Logic System of Concept Graphs with Negations (and its Relationship to Predicate Logic). Springer, Heidelberg (2003)
Dau, F.: Concept Graphs without Negations: Standardmodels and Standardgraphs. In: de Moor, A., Lex, W., Ganter, B. (eds.) Conceptual Structures for Knowledge Creation and Communication, pp. 243–256. Springer, Berlin (2003)
Dau, F., Hereth Correia, J.: Nested Concept Graphs: Mathematical Foundations and Applications in Databases. In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures: Contributions to ICCS 2003, pp. 125–141. Shaker Verlag, Aachen (2003)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)
Ganter, B., Wille, R.: Contextual Attribute Logic. In: Tepfenhart, W., Cyre, W. (eds.) Conceptual Structures: Standards and Practices, pp. 401–414. Springer, Heidelberg (1999)
Habermas, J.: Theorie kommunikativen Handelns. 2 Bände. Suhrkamp, Frankfurt (1981)
von Hentig, H.: Magier oder Magister? Über die Einheit der Wissenschaft im Verständigungsprozess. Suhrkamp Verlag, Frankfurt (1974)
Herrmann, C., Luksch, P., Skorsky, M., Wille, R.: Algebras of Semiconcepts and Double Boolean Algebras. Contributions to General Algebra 13 (2000)
Kant, I.: Logic. Dover, New York (1988)
Klinger, J.: Simple Semiconcept Graphs: a Boolean Logic Approach. In: Delugach, H.S., Stumme, G. (eds.) Conceptual Structures: Broadening the Base, pp. 115–128. Springer, Berlin (2001)
Klinger, J.: Semiconcept Graphs: Syntax and Semantics, Diplomarbeit, FB Mathematik, TU Darmstadt (2001)
Klinger, J.: Semiconcept Graphs with Variables. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 382–396. Springer, Berlin (2002)
Klinger, J., Vormbrock, B.: Contextual Boolean Logic: How did it develop? In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures: Contributions to ICCS 2003, pp. 143–156. Shaker Verlag, Aachen (2003)
Mineau, G., Stumme, G., Wille, R.: Conceptual Structures Represented by Conceptual Graphs and Formal Concept Analysis. In: Tepfenhart, W., Cyre, W. (eds.) Conceptual Structures: Standards and Practices, pp. 423–441. Springer, Berlin (1999)
Peirce, C.S.: Collected Papers, pp. 1931–1935. Harvard Uni. Press, Cambridge
Pollandt, S.: Relational Constructions on Semiconcept Graphs. In: Mineau, G. (ed.) Conceptual Structures: Extracting and Representing Semantics. Dept. of Computer Science, pp. 171–185. University Laval, Quebec (2001)
Pollandt, S.: Relation Graphs - A Structure for Representing Relations in Contextual Logic of Relations. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 382–396. Springer, Berlin (2002)
Pollandt, S., Wille, R.: On the Contextual Logic of Ordinal Data. In: Ganter, B., Mineau, G.W. (eds.) Conceptual Structures: Logical, Linguistic, and Computational Issues, pp. 249–262. Springer, Berlin (2000)
Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen. Shaker Verlag, Aachen (1998)
Prediger, S.: Simple Concept Graphs: A Logic Approach. In: Mugnier, M.-L., Chein, M. (eds.) Conceptual Structures: Theory, Tools and Application, pp. 225–239. Springer, Heidelberg (1998)
Prediger, S.: Nested Concept Graphs and Triadic Power Context Families: A Situation-Based Contextual Approach. In: Ganter, B., Mineau, G.W. (eds.) Conceptual Structures: Logical, Linguistic, and Computational Issues, pp. 249–262. Springer, Berlin (2000)
Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context. In: Tepfenhart, W., Cyre, W. (eds.) Conceptual Structures: Standards and Practices, pp. 401–414. Springer, Heidelberg (1999)
Seiler, T.B.: Begreifen und Verstehen: Ein Buch über Begriffe und Bedeutungen. Verlag Allgemeine Wissenschaft, Mühltal (2001)
Schoolmann, L., Wille, R.: Concept Graphs with Subdivision: a Semantic Approach. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 271–281. Springer, Berlin (2002)
Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Adison-Wesley, Reading (1984)
Sowa, J.F.: Conceptual Graphs Summary. In: Nagle, T.E., Nagle, J.A., Gerholz, L.L., Eklund, P.W. (eds.) Conceptual Structures: Current Research and Practice, pp. 3–51. Ellis Horwood (1992)
Tappe, J.: Simple Concept Graphs with Universal Quantifiers. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS 2000, pp. 94–108. Shaker, Achen (2000)
Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reiderl, Dordrecht
Wille, R.: Restructuring Mathematical Logic: An Approach based on Peirce’s Pragmatism. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra, Marcel Dekker, New York (1996)
Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) Conceptual Structures: Fullfilling Peirce’s Dream, pp. 290–303. Springer, Berlin (1997)
Wille, R.: Triadic Concept Graphs. In: Mugnier, M.-L., Chein, M. (eds.) Conceptual Structures: Theory, Tools and Application, pp. 194–208. Springer, Berlin (1998)
Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) Conceptual Structures: Logical, Linguistic, and Computational Issues, pp. 317–331. Springer, Berlin (2000)
Wille, R.: Contextual Logic Summary. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS 2000, pp. 256–276. Shaker, Aachen (2000)
Wille, R.: Lecture Notes on Contextual Logic of Relations. FB4-Preprint, TU Darmstadt (2000)
Wille, R.: Boolean Judgment Logic. In: Delugach, H.S., Stumme, G. (eds.) Conceptual Structures: Broadening the Base, pp. 115–128. Springer, Berlin (2001)
Wille, R.: Existential Concept Graphs of Power Context Families. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 382–396. Springer, Berlin (2002)
Wille, R.: The Contextual-Logic Structure of Distinctive Judgments. In: Priss, U., Corbett, D., Angelova, G. (eds.) Foundations and Applications of Conceptual Structures - Contributions to ICCS 2002, pp. 92–101. Bulgarian Academiy of Sciences (2002)
Wille, R.: Transdisziplinarität und Allgemeine Wissenschaft. FB4-Preprint No. 2200, TU Darmstadt (2002)
Wille, R.: Conceptual Content as Information - Basics for Contetxual Judgment Logic. In: de Moor, A., Lex, W., Ganter, B. (eds.) Conceptual Structures for Knowledge Creation and Communication, pp. 1–15. Springer, Berlin (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Dau, F., Klinger, J. (2005). From Formal Concept Analysis to Contextual Logic. In: Ganter, B., Stumme, G., Wille, R. (eds) Formal Concept Analysis. Lecture Notes in Computer Science(), vol 3626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11528784_4
Download citation
DOI: https://doi.org/10.1007/11528784_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27891-7
Online ISBN: 978-3-540-31881-1
eBook Packages: Computer ScienceComputer Science (R0)