Nothing Special   »   [go: up one dir, main page]

Skip to main content

From Formal Concept Analysis to Contextual Logic

  • Chapter
Formal Concept Analysis

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3626))

Abstract

A main goal of Formal Concept Analysis from its very beginning has been the support of rational communication. The source of this goal lies in the understanding of mathematics as a science which should encompass both its philosophical basis and its social consequences. This can be achieved by a process named ‘restructuring’. This approach shall be extended to logic, which is based on the doctrines of concepts, judgments, and conclusions. The program of restructuring logic is named Contextual Logic (CL). A main idea of CL is to combine Formal Concept Analysis and Concept Graphs (which are mathematical structures derived from conceptual graphs). Concept graphs mathematize judgments which combine concepts, and conclusions can be drawn by inferring concept graphs from others. So we see that concept graphs can be understood as a crucial part of the mathematical implementation of CL, based on Formal Concept Analysis as the mathematization of the doctrine of concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apel, K.-O.: Begründung. In: Seifert, H., Radnitzky, G. (eds.) Handlexikon der Wissenschaftstheorie, pp. 14–19. Ehrenwirth, München (1989)

    Google Scholar 

  2. Arnold, M.: Einführung in die Relationenlogik. Diplomarbeit. FB Mathematik, TU Darmstadt (2002)

    Google Scholar 

  3. Barwise, J. (ed.): Handbook of Mathematical Logic. North–Holland Publishing Company, Amsterdam (1977)

    Google Scholar 

  4. Becker, P., Hereth Correia, J.: The ToscanaJ Suite for Implementing Conceptual Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Brandom, R.B.: Making it explicit. Reasoning, Representing, and Discursive Commitment. Harvard University Press, Cambridge (1994)

    Google Scholar 

  6. Brandom, R.B.: Begründen und Begreifen. Eine Einführung in den Inferentialismus. Suhrkamp (2001)

    Google Scholar 

  7. Dau, F.: Concept Graphs and Predicate Logic. In: Delugach, H.S., Stumme, G. (eds.) Conceptual Structures: Broadening the Base, pp. 72–86. Springer, Berlin (2001)

    Chapter  Google Scholar 

  8. Dau, F.: The Logic System of Concept Graphs with Negations (and its Relationship to Predicate Logic). Springer, Heidelberg (2003)

    Book  Google Scholar 

  9. Dau, F.: Concept Graphs without Negations: Standardmodels and Standardgraphs. In: de Moor, A., Lex, W., Ganter, B. (eds.) Conceptual Structures for Knowledge Creation and Communication, pp. 243–256. Springer, Berlin (2003)

    Chapter  Google Scholar 

  10. Dau, F., Hereth Correia, J.: Nested Concept Graphs: Mathematical Foundations and Applications in Databases. In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures: Contributions to ICCS 2003, pp. 125–141. Shaker Verlag, Aachen (2003)

    Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)

    MATH  Google Scholar 

  12. Ganter, B., Wille, R.: Contextual Attribute Logic. In: Tepfenhart, W., Cyre, W. (eds.) Conceptual Structures: Standards and Practices, pp. 401–414. Springer, Heidelberg (1999)

    Google Scholar 

  13. Habermas, J.: Theorie kommunikativen Handelns. 2 Bände. Suhrkamp, Frankfurt (1981)

    Google Scholar 

  14. von Hentig, H.: Magier oder Magister? Über die Einheit der Wissenschaft im Verständigungsprozess. Suhrkamp Verlag, Frankfurt (1974)

    Google Scholar 

  15. Herrmann, C., Luksch, P., Skorsky, M., Wille, R.: Algebras of Semiconcepts and Double Boolean Algebras. Contributions to General Algebra 13 (2000)

    Google Scholar 

  16. Kant, I.: Logic. Dover, New York (1988)

    Google Scholar 

  17. Klinger, J.: Simple Semiconcept Graphs: a Boolean Logic Approach. In: Delugach, H.S., Stumme, G. (eds.) Conceptual Structures: Broadening the Base, pp. 115–128. Springer, Berlin (2001)

    Google Scholar 

  18. Klinger, J.: Semiconcept Graphs: Syntax and Semantics, Diplomarbeit, FB Mathematik, TU Darmstadt (2001)

    Google Scholar 

  19. Klinger, J.: Semiconcept Graphs with Variables. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 382–396. Springer, Berlin (2002)

    Google Scholar 

  20. Klinger, J., Vormbrock, B.: Contextual Boolean Logic: How did it develop? In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures: Contributions to ICCS 2003, pp. 143–156. Shaker Verlag, Aachen (2003)

    Google Scholar 

  21. Mineau, G., Stumme, G., Wille, R.: Conceptual Structures Represented by Conceptual Graphs and Formal Concept Analysis. In: Tepfenhart, W., Cyre, W. (eds.) Conceptual Structures: Standards and Practices, pp. 423–441. Springer, Berlin (1999)

    Chapter  Google Scholar 

  22. Peirce, C.S.: Collected Papers, pp. 1931–1935. Harvard Uni. Press, Cambridge

    Google Scholar 

  23. Pollandt, S.: Relational Constructions on Semiconcept Graphs. In: Mineau, G. (ed.) Conceptual Structures: Extracting and Representing Semantics. Dept. of Computer Science, pp. 171–185. University Laval, Quebec (2001)

    Google Scholar 

  24. Pollandt, S.: Relation Graphs - A Structure for Representing Relations in Contextual Logic of Relations. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 382–396. Springer, Berlin (2002)

    Google Scholar 

  25. Pollandt, S., Wille, R.: On the Contextual Logic of Ordinal Data. In: Ganter, B., Mineau, G.W. (eds.) Conceptual Structures: Logical, Linguistic, and Computational Issues, pp. 249–262. Springer, Berlin (2000)

    Google Scholar 

  26. Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen. Shaker Verlag, Aachen (1998)

    MATH  Google Scholar 

  27. Prediger, S.: Simple Concept Graphs: A Logic Approach. In: Mugnier, M.-L., Chein, M. (eds.) Conceptual Structures: Theory, Tools and Application, pp. 225–239. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  28. Prediger, S.: Nested Concept Graphs and Triadic Power Context Families: A Situation-Based Contextual Approach. In: Ganter, B., Mineau, G.W. (eds.) Conceptual Structures: Logical, Linguistic, and Computational Issues, pp. 249–262. Springer, Berlin (2000)

    Chapter  Google Scholar 

  29. Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context. In: Tepfenhart, W., Cyre, W. (eds.) Conceptual Structures: Standards and Practices, pp. 401–414. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  30. Seiler, T.B.: Begreifen und Verstehen: Ein Buch über Begriffe und Bedeutungen. Verlag Allgemeine Wissenschaft, Mühltal (2001)

    Google Scholar 

  31. Schoolmann, L., Wille, R.: Concept Graphs with Subdivision: a Semantic Approach. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 271–281. Springer, Berlin (2002)

    Google Scholar 

  32. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Adison-Wesley, Reading (1984)

    MATH  Google Scholar 

  33. Sowa, J.F.: Conceptual Graphs Summary. In: Nagle, T.E., Nagle, J.A., Gerholz, L.L., Eklund, P.W. (eds.) Conceptual Structures: Current Research and Practice, pp. 3–51. Ellis Horwood (1992)

    Google Scholar 

  34. Tappe, J.: Simple Concept Graphs with Universal Quantifiers. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS 2000, pp. 94–108. Shaker, Achen (2000)

    Google Scholar 

  35. Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reiderl, Dordrecht

    Google Scholar 

  36. Wille, R.: Restructuring Mathematical Logic: An Approach based on Peirce’s Pragmatism. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra, Marcel Dekker, New York (1996)

    Google Scholar 

  37. Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) Conceptual Structures: Fullfilling Peirce’s Dream, pp. 290–303. Springer, Berlin (1997)

    Chapter  Google Scholar 

  38. Wille, R.: Triadic Concept Graphs. In: Mugnier, M.-L., Chein, M. (eds.) Conceptual Structures: Theory, Tools and Application, pp. 194–208. Springer, Berlin (1998)

    Chapter  Google Scholar 

  39. Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) Conceptual Structures: Logical, Linguistic, and Computational Issues, pp. 317–331. Springer, Berlin (2000)

    Chapter  Google Scholar 

  40. Wille, R.: Contextual Logic Summary. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS 2000, pp. 256–276. Shaker, Aachen (2000)

    Google Scholar 

  41. Wille, R.: Lecture Notes on Contextual Logic of Relations. FB4-Preprint, TU Darmstadt (2000)

    Google Scholar 

  42. Wille, R.: Boolean Judgment Logic. In: Delugach, H.S., Stumme, G. (eds.) Conceptual Structures: Broadening the Base, pp. 115–128. Springer, Berlin (2001)

    Chapter  Google Scholar 

  43. Wille, R.: Existential Concept Graphs of Power Context Families. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 382–396. Springer, Berlin (2002)

    Chapter  Google Scholar 

  44. Wille, R.: The Contextual-Logic Structure of Distinctive Judgments. In: Priss, U., Corbett, D., Angelova, G. (eds.) Foundations and Applications of Conceptual Structures - Contributions to ICCS 2002, pp. 92–101. Bulgarian Academiy of Sciences (2002)

    Google Scholar 

  45. Wille, R.: Transdisziplinarität und Allgemeine Wissenschaft. FB4-Preprint No. 2200, TU Darmstadt (2002)

    Google Scholar 

  46. Wille, R.: Conceptual Content as Information - Basics for Contetxual Judgment Logic. In: de Moor, A., Lex, W., Ganter, B. (eds.) Conceptual Structures for Knowledge Creation and Communication, pp. 1–15. Springer, Berlin (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dau, F., Klinger, J. (2005). From Formal Concept Analysis to Contextual Logic. In: Ganter, B., Stumme, G., Wille, R. (eds) Formal Concept Analysis. Lecture Notes in Computer Science(), vol 3626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11528784_4

Download citation

  • DOI: https://doi.org/10.1007/11528784_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27891-7

  • Online ISBN: 978-3-540-31881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics