Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Image Retrieval Using Salient Regions with Vector-Spaces and Latent Semantics

  • Conference paper
Image and Video Retrieval (CIVR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3568))

Included in the following conference series:

  • 1170 Accesses

Abstract

The vector-space retrieval model and Latent Semantic Indexing approaches to retrieval have been used heavily in the field of text information retrieval over the past years. The use of these approaches in image retrieval, however, has been somewhat limited. In this paper, we present methods for using these techniques in combination with an invariant image representation based on local descriptors of salient regions. The paper also presents an evaluation in which the two techniques are used to find images with similar semantic labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hare, J.S., Lewis, P.H.: Salient regions for query by image content. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 317–325. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Sebe, N., Tian, Q., Loupias, E., Lew, M., Huang, T.: Evaluation of salient point techniques. Image and Vision Computing 21, 1087–1095 (2003)

    Article  Google Scholar 

  3. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: International Conference on Computer Vision, pp. 1470–1477 (2003)

    Google Scholar 

  4. Zhao, R., Grosky, W.I.: From features to semantics: Some preliminary results. In: IEEE International Conference on Multimedia and Expo (II), pp. 679–682 (2000)

    Google Scholar 

  5. Westmacott, M., Lewis, P.: An inverted index for image retrieval using colour pair feature terms. In: Proceedings of the SPIE Image and Video Communications and Processing Conference, pp. 881–889 (2003)

    Google Scholar 

  6. Squire, D.M., Müller, H., Müller, W.: Improving response time by search pruning in a content-based image retrieval system, using inverted file techniques. In: CBAIVL 1999: Proceedings of the IEEE Workshop on Content-Based Access of Image and Video Libraries, Washington, DC, USA, p. 45. IEEE Computer Society, Los Alamitos (1999)

    Chapter  Google Scholar 

  7. Cascia, M.L., Sethi, S., Sclaroff, S.: Combining textual and visual cues for content-based image retrieval on the world wide web. In: CBAIVL 1998: Proceedings of the IEEE Workshop on Content - Based Access of Image and Video Libraries, Washington, DC, USA, p. 24. IEEE Computer Society, Los Alamitos (1998)

    Chapter  Google Scholar 

  8. Hare, J.S., Lewis, P.H.: Content-based image retrieval using a mobile device as a novel interface. In: Lienhart, R.W., Babaguchi, N., Chang, E.Y. (eds.) Proceedings of Storage and Retrieval Methods and Applications for Multimedia 2005, pp. 64–75. SPIE, San Jose (2005)

    Google Scholar 

  9. Robertson, S.E., Walker, S., Hancock-Beaulieu, M.: Okapi at trec-7: Automatic ad hoc, filtering, vlc and interactive. In: Lamersdorf, W., Merz, M. (eds.) TREC 1998. LNCS, vol. 1402, pp. 199–210. Springer, Heidelberg (1998)

    Google Scholar 

  10. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by latent semantic analysis. Journal of the American Society of Information Science 41, 391–407 (1990)

    Article  Google Scholar 

  11. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1026–1038 (2002)

    Article  Google Scholar 

  12. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  13. Mikolajczyk, K.: Detection of local features invariant to affine transformations. PhD thesis, Institut National Polytechnique de Grenoble, France (2002)

    Google Scholar 

  14. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: International Conference on Computer Vision & Pattern Recognition, vol. 2, pp. 257–263 (2003)

    Google Scholar 

  15. University of Washington: Ground truth image database (2004), http://www.cs.washington.edu/research/imagedatabase/groundtruth/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hare, J.S., Lewis, P.H. (2005). On Image Retrieval Using Salient Regions with Vector-Spaces and Latent Semantics. In: Leow, WK., Lew, M.S., Chua, TS., Ma, WY., Chaisorn, L., Bakker, E.M. (eds) Image and Video Retrieval. CIVR 2005. Lecture Notes in Computer Science, vol 3568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526346_57

Download citation

  • DOI: https://doi.org/10.1007/11526346_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27858-0

  • Online ISBN: 978-3-540-31678-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics