Nothing Special   »   [go: up one dir, main page]

Skip to main content

Perceptive Evaluation for the Optimal Discounted Reward in Markov Decision Processes

  • Conference paper
Modeling Decisions for Artificial Intelligence (MDAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3558))

Abstract

We formulate a fuzzy perceptive model for Markov decision processes with discounted payoff in which the perception for transition probabilities is described by fuzzy sets. Our aim is to evaluate the optimal expected reward, which is called a fuzzy perceptive value, based on the perceptive analysis. It is characterized and calculated by a certain fuzzy relation. A machine maintenance problem is discussed as a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blackwell, D.: Discrete dynamic programming. Ann. Math. Statist. 33, 719–726 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  2. Derman, C.: Finite State Markovian Decision Processes. Academic Press, New York (1970)

    MATH  Google Scholar 

  3. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, London (1980)

    MATH  Google Scholar 

  4. Howard, R.: Dynamic Programming and Markov Process. MIT Press, Cambrige (1960)

    Google Scholar 

  5. Kurano, M., Song, J., Hosaka, M., Huang, Y.: Controlled Markov set-chains with discounting. J. Appl. Prob. 35, 293–302 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: Ordering of fuzzy sets – A brief survey and new results. J. Operations Research Society of Japan 43, 138–148 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: A fuzzy treatment of uncertain Markov decision process. RIMS Koukyuroku 1132, 221–229 (2000)

    MATH  MathSciNet  Google Scholar 

  8. Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y.: A fuzzy stopping problem with the concept of perception. Fuzzy Optimization and Decision Making 3, 367–374 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mine, H., Osaki, S.: Markov Decision Process. Elsevier, Amsterdam (1970)

    Google Scholar 

  10. Puterman, M.L.: Markov Decision Process: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Chichester (1994)

    MATH  Google Scholar 

  11. Solan, E.: Continuity of the value of competitive Markov decision processes. J. Theoretical Probability 16, 831–845 (2004)

    Article  MathSciNet  Google Scholar 

  12. Yoshida, Y., Kerre, E.E.: A fuzzy ordering on multi-dimensional fuzzy sets induced from convex cones. Fuzzy Sets and Systems 130, 343–355 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zadeh, L.A.: Fuzzy sets. Inform. and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zadeh, L.A.: Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. J. of Statistical Planning and Inference 105, 233–264 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurano, M., Yasuda, M., Nakagami, Ji., Yoshida, Y. (2005). Perceptive Evaluation for the Optimal Discounted Reward in Markov Decision Processes. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2005. Lecture Notes in Computer Science(), vol 3558. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526018_28

Download citation

  • DOI: https://doi.org/10.1007/11526018_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27871-9

  • Online ISBN: 978-3-540-31883-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics