Nothing Special   »   [go: up one dir, main page]

Skip to main content

Classification of Boolean Functions of 6 Variables or Less with Respect to Some Cryptographic Properties

  • Conference paper
Automata, Languages and Programming (ICALP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3580))

Included in the following conference series:

Abstract

This paper presents an efficient approach to the classification of the affine equivalence classes of cosets of the first order Reed-Muller code with respect to cryptographic properties such as correlation-immunity, resiliency and propagation characteristics. First, we apply the method to completely classify with this respect all the 48 classes into which the general affine group AGL(2,5) partitions the cosets of RM(1,5). Second, after distinguishing the 34 affine equivalence classes of cosets of RM(1,6) in RM(3,6) we perform the same classification for these classes.

The work described in this paper has been supported in part by the European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT and by Concerted Research Action GOA Ambiorix 2005/11 of the Flemish Government. An Braeken is research assistent of the FWO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berlekamp, E., Welch, L.: Weight Distribution of the Cosets of the (32,6) Reed-Muller Code. IEEE Transactions on Information Theory 18, 203–207 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brier, E., Langevin, P.: Classification of Boolean Cubic Forms of Nine Variables. In: 2003 IEEE Information Theory Workshop (ITW 2003), pp. 179–182. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  3. Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On Correlation-Immune Functions. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 86–100. Springer, Heidelberg (1992)

    Google Scholar 

  4. Carlet, C., Sarkar, P.: Spectral Domain Analysis of Correlation Immune and Resilient Boolean Functions. Finite Fields and Applications 8(1), 120–130 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Clark, J., Jacob, J.L., Stepney, S., Maitra, S., Millan, W.: Evolving Boolean Functions Satisfying Multiple Criteria. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 246–259. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Evertse, J.H.: Linear Structures in Block Ciphers. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 249–266. Springer, Heidelberg (1988)

    Google Scholar 

  7. Maiorana, J.: A Classification of the Cosets of the Reed-Muller Code R(1,6). Mathematics of Computation 57(195), 403–414 (1991)

    MATH  MathSciNet  Google Scholar 

  8. Guo-Zhen, X., Massey, J.: A Spectral Characterization of Correlation-Immune Combining Functions. IEEE Transactions on Information Theory 34(3), 569–571 (1988)

    Article  MATH  Google Scholar 

  9. Hou, X.-D.: AGL(m,2) Acting on RM(r,m)/RM(s,m). Journal of Algebra 171, 921–938 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hou, X.-D.: GL(m,2) Acting on R(r,m)/R(r − − 1,m). Discrete Mathematics 149, 99–122 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error- Correcting Codes. North-Holland Publishing Company, Amsterdam (1977)

    MATH  Google Scholar 

  12. Maitra, S., Pasalic, E.: Further Constructions of Resilient Boolean Functions with Very High Nonlinearity. IEEE Transactions on Information Theory 48(7), 1825–1834 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pasalic, E., Johansson, T., Maitra, S., Sarkar, P.: New Constructions of Resilient and Correlation Immune Boolean Functions Achieving Upper Bounds on Nonlinearity. In: Workshop on Coding and Cryptography 2001, pp. 425–435 (2001)

    Google Scholar 

  14. Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation Characteristics of Boolean Functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)

    Google Scholar 

  15. Preneel, B.: Analysis and design of cryptographic hash functions, PhD. Thesis, Katholieke Universiteit Leuven (1993)

    Google Scholar 

  16. Stanica, P., Sung, S.H.: Boolean Functions with Five Controllable Cryptographic Properties. Designs, Codes and Cryptography 31, 147–157 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Siegenthaler, T.: Correlation-Immunity of Non-linear Combining Functions for Cryptographic Applications. IEEE Transactions on Information Theory 30(5), 776–780 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tarannikov, Y., Korolev, P., Botev, A.: Autocorrelation Coefficients and Correlation Immunity of Boolean Functions. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 460–479. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Zheng, Y., Zhang, X.M.: GAC - the Criterion for Global Avalanche Characteristics of Cryptographic Functions. Journal for Universal Computer Science 1(5), 316–333 (1995)

    MathSciNet  Google Scholar 

  20. Zheng, Y., Zhang, X.M.: On Relationship Among Avalanche, Nonlinearity, and Propagation Criteria. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 470–483. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Braeken, A., Borissov, Y., Nikova, S., Preneel, B. (2005). Classification of Boolean Functions of 6 Variables or Less with Respect to Some Cryptographic Properties. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_27

Download citation

  • DOI: https://doi.org/10.1007/11523468_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27580-0

  • Online ISBN: 978-3-540-31691-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics