Abstract
This paper presents an efficient approach to the classification of the affine equivalence classes of cosets of the first order Reed-Muller code with respect to cryptographic properties such as correlation-immunity, resiliency and propagation characteristics. First, we apply the method to completely classify with this respect all the 48 classes into which the general affine group AGL(2,5) partitions the cosets of RM(1,5). Second, after distinguishing the 34 affine equivalence classes of cosets of RM(1,6) in RM(3,6) we perform the same classification for these classes.
The work described in this paper has been supported in part by the European Commission through the IST Programme under Contract IST-2002-507932 ECRYPT and by Concerted Research Action GOA Ambiorix 2005/11 of the Flemish Government. An Braeken is research assistent of the FWO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berlekamp, E., Welch, L.: Weight Distribution of the Cosets of the (32,6) Reed-Muller Code. IEEE Transactions on Information Theory 18, 203–207 (1972)
Brier, E., Langevin, P.: Classification of Boolean Cubic Forms of Nine Variables. In: 2003 IEEE Information Theory Workshop (ITW 2003), pp. 179–182. IEEE Press, Los Alamitos (2003)
Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On Correlation-Immune Functions. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 86–100. Springer, Heidelberg (1992)
Carlet, C., Sarkar, P.: Spectral Domain Analysis of Correlation Immune and Resilient Boolean Functions. Finite Fields and Applications 8(1), 120–130 (2002)
Clark, J., Jacob, J.L., Stepney, S., Maitra, S., Millan, W.: Evolving Boolean Functions Satisfying Multiple Criteria. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 246–259. Springer, Heidelberg (2002)
Evertse, J.H.: Linear Structures in Block Ciphers. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 249–266. Springer, Heidelberg (1988)
Maiorana, J.: A Classification of the Cosets of the Reed-Muller Code R(1,6). Mathematics of Computation 57(195), 403–414 (1991)
Guo-Zhen, X., Massey, J.: A Spectral Characterization of Correlation-Immune Combining Functions. IEEE Transactions on Information Theory 34(3), 569–571 (1988)
Hou, X.-D.: AGL(m,2) Acting on RM(r,m)/RM(s,m). Journal of Algebra 171, 921–938 (1995)
Hou, X.-D.: GL(m,2) Acting on R(r,m)/R(r − − 1,m). Discrete Mathematics 149, 99–122 (1996)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error- Correcting Codes. North-Holland Publishing Company, Amsterdam (1977)
Maitra, S., Pasalic, E.: Further Constructions of Resilient Boolean Functions with Very High Nonlinearity. IEEE Transactions on Information Theory 48(7), 1825–1834 (2002)
Pasalic, E., Johansson, T., Maitra, S., Sarkar, P.: New Constructions of Resilient and Correlation Immune Boolean Functions Achieving Upper Bounds on Nonlinearity. In: Workshop on Coding and Cryptography 2001, pp. 425–435 (2001)
Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation Characteristics of Boolean Functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)
Preneel, B.: Analysis and design of cryptographic hash functions, PhD. Thesis, Katholieke Universiteit Leuven (1993)
Stanica, P., Sung, S.H.: Boolean Functions with Five Controllable Cryptographic Properties. Designs, Codes and Cryptography 31, 147–157 (2004)
Siegenthaler, T.: Correlation-Immunity of Non-linear Combining Functions for Cryptographic Applications. IEEE Transactions on Information Theory 30(5), 776–780 (1984)
Tarannikov, Y., Korolev, P., Botev, A.: Autocorrelation Coefficients and Correlation Immunity of Boolean Functions. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 460–479. Springer, Heidelberg (2001)
Zheng, Y., Zhang, X.M.: GAC - the Criterion for Global Avalanche Characteristics of Cryptographic Functions. Journal for Universal Computer Science 1(5), 316–333 (1995)
Zheng, Y., Zhang, X.M.: On Relationship Among Avalanche, Nonlinearity, and Propagation Criteria. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 470–483. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Braeken, A., Borissov, Y., Nikova, S., Preneel, B. (2005). Classification of Boolean Functions of 6 Variables or Less with Respect to Some Cryptographic Properties. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_27
Download citation
DOI: https://doi.org/10.1007/11523468_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27580-0
Online ISBN: 978-3-540-31691-6
eBook Packages: Computer ScienceComputer Science (R0)