Nothing Special   »   [go: up one dir, main page]

Skip to main content

Second-Level Possibilistic Measures Induced by Random Variables

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3571))

  • 1206 Accesses

Abstract

Given a real-valued random variable defined on a probability space \(\langle {\Omega}, \mathcal{A}, P \rangle\) and given a subset A of the space Ω of all elementary random events, an ω 0 ∈ Ω is called possibly favourable to A with respect to X, if it belongs to the subset A X of Ω with this property: for every \(\omega \in A^X, X(\omega) \leq sup_{\omega_1 \in A} X(\omega_1)\) holds. The mapping Π ascribing to each A⊂Ω the value P(A X), i.e., the probability of the set of all elementary random events possibly favorable to A w.r.to X, defines a possibilistic measure on the power-set of all subsets of Ω. Having at hand two random variables X and Y defined on \(\langle {\Omega}, \mathcal{A}, P \rangle\) and repeating our reasoning with A replaced by A X and with X replaced by Y, we arrive at the idea of second-level possibilistic measures induced by random variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. De Cooman, G.: Possibility theory I-III. International Journal of General Systems 25, 291–323, 325-351, 353-371 (1997)

    Article  MATH  Google Scholar 

  2. Doob, J.L.: Stochastic Processes. John Wiley and Sons, New York (1953)

    MATH  Google Scholar 

  3. Dubois, D., Prade, H.: Théorie des Possibilités – Applications à la Représentation des Connaissances en Informatique. Mason, Paris (1985)

    Google Scholar 

  4. Dubois, D., Nguyen, H., Prade, H.: Possibilisty theory, probability theory and fuzzy sets: misunderstandings, bridges and gaps. In: Dubois, D., Prade, H. (eds.) The Handbook of Fuzy Sets Series, pp. 343–438. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  5. Fine, T.L.: Theories of Probability – An Examination of Foundations. Academic Press, New York (1973)

    MATH  Google Scholar 

  6. Gillies, D.: Philosophical Theories of Probability, Routledge, London and New York (2000)

    Google Scholar 

  7. Halmos, P.R., van Nostrand, D.: Measure Theory, New York, Toronto, London (1950)

    Google Scholar 

  8. Khrennikov, A.: Interpretations of Probability. VSP, Utrecht-Tokyo (1999)

    Google Scholar 

  9. Kramosil, I.: Possibilistic measures and possibly favorable elementary random events. Neural Network World 15(2), 85–109 (2005)

    MathSciNet  Google Scholar 

  10. Loéve, M., van Nostrand, D.: Probability Theory, New York, Toronto, London (1960)

    Google Scholar 

  11. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kramosil, I. (2005). Second-Level Possibilistic Measures Induced by Random Variables. In: Godo, L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2005. Lecture Notes in Computer Science(), vol 3571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11518655_74

Download citation

  • DOI: https://doi.org/10.1007/11518655_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27326-4

  • Online ISBN: 978-3-540-31888-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics