Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Task Scheduling in Computational GRID Environments

  • Conference paper
Advances in Grid Computing - EGC 2005 (EGC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3470))

Included in the following conference series:

  • 363 Accesses

Abstract

In this work we present the design and development of an adaptive task scheduling model which enables the definition and exploitation of a framework especially suitable for managing environments of intensive computing load. The framework supplies queuing mechanisms, priority-based scheduling and resources allocation strategies, load monitoring, and implements fault tolerance procedures. Buffering strategies have been used to reduce idle time for load reposition and to take advantage of I/O overlapping, increasing efficiency in the use of resources. Several tests have been performed using applications from the bioinformatics domain for which adaptive strategies have shown their ability to produce a noticeable reduction on execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual organizations. In: Supercomputer Applications (2001), http://www.globus.org/research/papers/anatomy.pdf

  2. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure, 1st edn. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  3. Foster, I., et al.: The Globus Project: A Status Report. In: Proceedings of the Seventh Heterogeneous Computing Workshop (1998), www.globus.org

  4. TeraGrid, http://www.teragrid.org/userinfo/docs/TeraGrid-Data-Primer.pdf

  5. NASA information power Grid Project, http://www.globus.org/presentations/retreat98/power_grid/

  6. Condor: High Throughput Computing, http://www.cs.wisc.edu/condor

  7. Thain, D., Tannenbaum, T., Livny, M.: Condor and the grid. In: Berman, F., Fox, G., Hey, T. (eds.) Grid

    Google Scholar 

  8. Área temática de bioinformática (2003), Available at, http://irisgrid.rediris.es/doc/biogrid.pdf

  9. Stevens, R., Robinson, A., Goble, C.A.: myGrid: Personalised Bioinformatics on the Information Grid. In: proceedings of 11th International Conference on Intelligent Systems in Molecular Biology, Bioinformatics, Brisbane, Australia, June 29 - July 3 2003, vol. 19(1) (2003), http://www.ebi.ac.uk/mygrid/

  10. Abramson, D., et al.: High performance parametric modelling with Nimrod/G: Killer application for the global Grid? In: proceedings of the Seventh International Symposium on High Performance Distributed Processing Symposium, IPDPS 2000 (2000)

    Google Scholar 

  11. Berman, F., et al.: The GrADS Project: Software support for high-level Grid application development. International Journal of Supercomputer Applications 15(4), 327–344 (2001)

    Article  Google Scholar 

  12. Trelles-Salazar, O., Zapata., E., Carazo, J.M.: Mapping Strategies for Sequential Sequence Comparison Algorithms on LAN-based Message Passing Architectures. In: High Performace Computing and Networking HPCN-Europe 1994, Munich-Deutschland (1994)

    Google Scholar 

  13. Trelles-Salazar, O., Zapata, E.L., Carazo, J.M.: On an efficient parallelization of exhaustive sequence comparison algorithms. Computer Applications in BioSciences 10(5), 509–511 (1994)

    Google Scholar 

  14. Rodriguez, A., Pérez-Pulido, A., Thode, G., Carazo, J. M., Trelles, O.: Mining Low-level similarity signals from sequence databases. In: High Performance Computers Applied to BioInformatics and Computational Biology. 4th Conference on Systematics, cybernetics and Informatics, SCI 2000, Orlando, Florida, USA (2000)

    Google Scholar 

  15. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

    Google Scholar 

  16. Pérez, A.J., Thode, G., Trelles, O.: AnaGram: protein function assignment. Bioinformatics 20(2), 291–292 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hidalgo-Conde, M., Rodríguez, A., Ramírez, S., Trelles, O. (2005). Adaptive Task Scheduling in Computational GRID Environments. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds) Advances in Grid Computing - EGC 2005. EGC 2005. Lecture Notes in Computer Science, vol 3470. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508380_90

Download citation

  • DOI: https://doi.org/10.1007/11508380_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26918-2

  • Online ISBN: 978-3-540-32036-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics