Nothing Special   »   [go: up one dir, main page]

Skip to main content

Intelligent Vocal Cord Image Analysis for Categorizing Laryngeal Diseases

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2005)

Abstract

Colour, shape, geometry, contrast, irregularity and roughness of the visual appearance of vocal cords are the main visual features used by a physician to diagnose laryngeal diseases. This type of examination is rather subjective and to a great extent depends on physician’s experience. A decision support system for automated analysis of vocal cord images, created exploiting numerous vocal cord images can be a valuable tool enabling increased reliability of the analysis, and decreased intra- and inter-observer variability. This paper is concerned with such a system for analysis of vocal cord images. Colour, texture, and geometrical features are used to extract relevant information. A committee of artificial neural networks is then employed for performing the categorization of vocal cord images into healthy, diffuse, and nodular classes. A correct classification rate of over 93% was obtained when testing the system on 785 vocal cord images.

We gratefully acknowledge the support we have received from the Lithuanian State Science and Studies Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. IEEE trans Pattern Analysis Machine Intelligence 12, 55–73 (1990)

    Article  Google Scholar 

  2. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Breiman, L.: Pasting small votes for classification in large databases and on-line. Machine Learning 36, 85–103 (1999)

    Article  Google Scholar 

  4. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans Pattern Analysis Machine Intelligence 24, 603–619 (2002)

    Article  Google Scholar 

  5. Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, New York (1996)

    MATH  Google Scholar 

  6. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Galloway, M.M.: Texture analysis using gray level run lengths. Computer Graphics and Image Processing 4, 172–179 (1975)

    Article  Google Scholar 

  8. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans System, Man and Cybernetics 3, 610–621 (1973)

    Article  Google Scholar 

  9. Ilgner, J.F.R., Palm, C., Schutz, A.G., Spitzer, K., Westhofen, M., Lehmann, T.M.: Colour texture analysis for quantitative laryngoscopy. Acta Oto-Laryngologica 123, 730–734 (2003)

    Article  Google Scholar 

  10. Lu, S.W., Xu, H.: Textured image segmentation using autoregressive model and artificial neural network. Pattern Recognition 28, 1807–1817 (1995)

    Article  Google Scholar 

  11. MacKay, D.J.: Bayesian interpolation. Neural Computation 4, 415–447 (1992)

    Article  Google Scholar 

  12. Ohlsson, M.: WeAidUa decision support system for myocardial perfusion images using artificial neural networks. Artificial Intelligence in Medicine 30, 49–60 (2004)

    Article  Google Scholar 

  13. Tran, L.V.: Efficient Image Retrieval with Statistical Color Descriptors. PhD thesis, Linkoping University, Linkoping, Sweden (2003)

    Google Scholar 

  14. Unser, M.: Texture classification and segmentation using wavelet frames. IEEE trans Image Processing 4, 1549–1560 (1995)

    Article  Google Scholar 

  15. Verikas, A., Lipnickas, A., Bacauskiene, M., Malmqvist, K.: Fusing neural networks through fuzzy integration. In: Bunke, H., Kandel, A. (eds.) Hybrid Methods in Pattern Recognition, pp. 227–252. World Scientific, Singapore (2002)

    Chapter  Google Scholar 

  16. Verikas, A., Lipnickas, A.: Fusing neural networks through space partitioning and fuzzy integration. Neural Processing Letters 16, 53–65 (2002)

    Article  MATH  Google Scholar 

  17. Verikas, A., Gelzinis, A., Malmqvist, K.: Using unlabelled data to train a multilayer perceptron. Neural Processing Letters 14, 179–201 (2001)

    Article  MATH  Google Scholar 

  18. Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A.: Soft combination of neural classifiers: A comparative study. Pattern Recognition Letters 20, 429–444 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verikas, A., Gelzinis, A., Bacauskiene, M., Uloza, V. (2005). Intelligent Vocal Cord Image Analysis for Categorizing Laryngeal Diseases. In: Ali, M., Esposito, F. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2005. Lecture Notes in Computer Science(), vol 3533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11504894_11

Download citation

  • DOI: https://doi.org/10.1007/11504894_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26551-1

  • Online ISBN: 978-3-540-31893-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics