Abstract
We prove that a first order ordinary differential equation (ODE) with a dicritical singularity at the origin has a one-parameter family of convergent fractional power series solutions. The notion of a dicritical singularity is extended from the class of first order and first degree ODE’s to the class of first order ODE’s. An analogous result for series with real exponents is given.
The main tool used in this paper is the Newton polygon method for ODE. We give a description of this method and some elementary applications such as an algorithm for finding polynomial solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Briot, C., Bouquet, J.: Propriétés des fonctions définies par des équations différentielles. Journal de l’Ecole Polytechnique 36, 133–198 (1856)
Fine, H.: On the functions defined by differential equations, with an extension of the Puiseux Polygon construction to these equations. Amer. Jour. of Math. XI, 317–328 (1889)
Grigoriev, D.Y., Singer, M.: Solving Ordinary Differential Equations in Terms of Series with Real Exponents. Trans A.M.S. 327, 329–351 (1991)
Cano, J.: On the series defined by differential equations, with an extension of the Puiseux Polygon construction to these equations. Analysis, Inter. Jour. Anal. its Appli. 13, 103–119 (1993)
Cano, J.: An extension of the Newton-Puiseux Polygon construction to give solutions of pfaffian forms. Ann. Inst. Fourier 43, 125–142 (1993)
Della Dora, J., Jung, F.: About the Newton Polygon Algorithm for Non Linear Ordinary Differential Equations. In: Proceedings of ISSAC 1997 (1997)
van der Hoeven, J.: Asymptotique automatique. PhD thesis, École Polytechnique (1997)
Cano, F., Moussu, R., Rolin, J.P.: Non-oscillating integral curves and valuations. Crelle’s Journal (to appear)
Malgrange, B.: Sur le théorème de Maillet. Asymptotic Anal 2, 1–4 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cano, J. (2005). The Newton Polygon Method for Differential Equations. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_3
Download citation
DOI: https://doi.org/10.1007/11499251_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26296-1
Online ISBN: 978-3-540-32119-4
eBook Packages: Computer ScienceComputer Science (R0)