Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Newton Polygon Method for Differential Equations

  • Conference paper
Computer Algebra and Geometric Algebra with Applications (IWMM 2004, GIAE 2004)

Abstract

We prove that a first order ordinary differential equation (ODE) with a dicritical singularity at the origin has a one-parameter family of convergent fractional power series solutions. The notion of a dicritical singularity is extended from the class of first order and first degree ODE’s to the class of first order ODE’s. An analogous result for series with real exponents is given.

The main tool used in this paper is the Newton polygon method for ODE. We give a description of this method and some elementary applications such as an algorithm for finding polynomial solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Briot, C., Bouquet, J.: Propriétés des fonctions définies par des équations différentielles. Journal de l’Ecole Polytechnique 36, 133–198 (1856)

    Google Scholar 

  2. Fine, H.: On the functions defined by differential equations, with an extension of the Puiseux Polygon construction to these equations. Amer. Jour. of Math. XI, 317–328 (1889)

    Article  MathSciNet  Google Scholar 

  3. Grigoriev, D.Y., Singer, M.: Solving Ordinary Differential Equations in Terms of Series with Real Exponents. Trans A.M.S. 327, 329–351 (1991)

    Article  Google Scholar 

  4. Cano, J.: On the series defined by differential equations, with an extension of the Puiseux Polygon construction to these equations. Analysis, Inter. Jour. Anal. its Appli. 13, 103–119 (1993)

    MATH  MathSciNet  Google Scholar 

  5. Cano, J.: An extension of the Newton-Puiseux Polygon construction to give solutions of pfaffian forms. Ann. Inst. Fourier 43, 125–142 (1993)

    MATH  MathSciNet  Google Scholar 

  6. Della Dora, J., Jung, F.: About the Newton Polygon Algorithm for Non Linear Ordinary Differential Equations. In: Proceedings of ISSAC 1997 (1997)

    Google Scholar 

  7. van der Hoeven, J.: Asymptotique automatique. PhD thesis, École Polytechnique (1997)

    Google Scholar 

  8. Cano, F., Moussu, R., Rolin, J.P.: Non-oscillating integral curves and valuations. Crelle’s Journal (to appear)

    Google Scholar 

  9. Malgrange, B.: Sur le théorème de Maillet. Asymptotic Anal 2, 1–4 (1989)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cano, J. (2005). The Newton Polygon Method for Differential Equations. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_3

Download citation

  • DOI: https://doi.org/10.1007/11499251_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26296-1

  • Online ISBN: 978-3-540-32119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics