Abstract
Legged locomotion has not been understood well enough to build walking machines that autonomously navigate through rough terrain. The current biological understanding of legged locomotion implies a highly decentralised and modular control structure. Neurocontrollers were developed for single, morphological distinct legs of a hexapod walking machine through artificial evolution and physical simulation. The results showed extremely small reflex-oscillators which inherently relied on the sensori-motor loop and a hysteresis effect. Relationships with biological findings are shortly discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A.R., Kram, R., Lehmann, S.: How animals move: An integrative view. Science 288, 100–106 (2000)
Wendler, G.: The co-ordination of walking movements in arthropods. Symp. Soc. exp. Biol. 20, 229–249 (1966)
Orlovsky, G., Deliagina, T., Grillner, S.: Neuronal Control of Locomotion. Oxford University Press, Oxford (1999)
Schmidt, J., Fischer, H., Büschges, A.: Pattern generation for walking and searching movements of a stick insect leg. ii. control of motoneural activity. J. Neurophysiology 85, 354–361 (2001)
Bässler, U., Büschges, A.: Pattern generation for stick insect walking movements – multisensory control of a locomotor program. Brain Research Reviews 27, 65–88 (1998)
Ekeberg, O., Blümel, M., Büschges, A.: Dynamic simulation of insect walking. Arthropod Structure & Development 33, 287–300 (2004)
Brooks, R.A.: Intelligence without representation. Artificial Intelligence, 139–159 (1991)
Brooks, R.A.: New approaches to robotics. Science 253, 1227–1232 (1991)
Seys, C.W., Beer, R.D.: Evolving walking: The anatomy of an evolutionary search. In: From Animals to Animats 8: Proceedings of the Eighth International Conference on Simulation of Adaptive Behavior, Los Angeles, CA (2004)
Brooks, R.A.: A robot that walks: Emergent behaviors from a carefully evolved network. Technical Report AI MEMO 1091. MIT (1989)
Schmitz, J., Dean, J., Kindermann, T., Schumm, M., Cruse, H.: A biologically inspired controller for hexapod walking: Simple solutions by exploiting physical properties. Biol. Bull. 200, 195–200 (2001)
Huelse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved neuro-controllers for autonomous robots. Connection Science 16, 249–266 (2004)
Pasemann, F.: A simple chaotic neuron. Physica D 104, 205–211 (1997)
Heinzel, H.G., Weimann, J.M., Marder, E.: The behavioral repertoire of the gastric mill in the crab, Cancer pagurus: An in situ endoscopic and electrophysiological examination. The Journal of Neuroscience 13, 1793–1803 (1993)
Dean, J.: Animats and what they can tell us. Trends in Cognitive Science 2, 60–67 (1998)
Dean, J., Kindermann, T., Schmitz, J., Schumm, M., Cruse, H.: Control of walking in the stick insect: From behavior and physiology to modeling. Autonomous Robots 7, 271–288 (1999)
Prochazka, A., Gillard, D., Bennett, D.J.: Implications of positive feedback in the control of movement. The Journal of Neurophysiology 77, 3237–3251 (1997)
Cruse, H.: What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences 13, 15–21 (1990)
Grillner, S., Deliagina, T., Ekeberg, O., Manira, A.E., Hill, R.H., Lansner, A., Orlovsky, G.N., Wallen, P.: Neural networks that coordinate locomotion and body orientation in lamprey. Trends Neurosci. 18, 270–279 (1995)
Grillner, S., Ekeberg, O., Manira, A.E., Lansner, A., Parker, D., Tegner, J., Wallen, P.: Intrinsic function of a neuronal network - a vertebrate central pattern generator. Brain Res. Rev. 26, 184–197 (1998)
Selverston, A.I., Panchin, Y.V., Arshavsky, Y.I., Orlovsky, G.N.: Shared Features of Invertebrate Central Pattern Generators. In: Neurons, Networks, and Motor Behavior, pp. 105–117. MIT Press, Cambridge (1999)
Büschges, A., Ludwar, B.C., Bucher, D., Schmidt, J., DiCaprio, R.A.: Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. European Journal of Neuroscience 19, 1856–1862 (2004)
Delcomyn, F.: Walking robots and the central and peripheral control of locomotion in insects. Autonomous Robots 7, 259–270 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
von Twickel, A., Pasemann, F. (2005). Evolved Neural Reflex-Oscillators for Walking Machines. In: Mira, J., Álvarez, J.R. (eds) Mechanisms, Symbols, and Models Underlying Cognition. IWINAC 2005. Lecture Notes in Computer Science, vol 3561. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499220_39
Download citation
DOI: https://doi.org/10.1007/11499220_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26298-5
Online ISBN: 978-3-540-31672-5
eBook Packages: Computer ScienceComputer Science (R0)