Abstract
We address the problem of incorporating transformation invariance in kernels for pattern analysis with kernel methods. We introduce a new class of kernels by so called Haar-integration over transformations. This results in kernel functions, which are positive definite, have adjustable invariance, can capture simultaneously various continuous or discrete transformations and are applicable in various kernel methods. We demonstrate these properties on toy examples and experimentally investigate the real-world applicability on an image recognition task with support vector machines. For certain transformations remarkable complexity reduction is demonstrated. The kernels hereby achieve state-of-the-art results, while omitting drawbacks of existing methods.
Chapter PDF
Similar content being viewed by others
References
Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)
DeCoste, D., Schölkopf, B.: Training invariant support vector machines. Machine Learning 46, 161–190 (2002)
Schulz-Mirbach, H.: Constructing invariant features by averaging techniques. In: Proc. of the 12th ICPR, vol. 2, pp. 387–390. IEEE Computer Society, Los Alamitos (1994)
Schael, M.: Texture defect detection using invariant textural features. In: Proc. of the 23rd DAGM - Symposium Mustererkennung, pp. 17–24. Springer, Heidelberg (2001)
Siggelkow, S.: Feature-Histograms for Content-Based Image Retrieval. PhD thesis, Albert-Ludwigs-Universität Freiburg (2002)
Ronneberger, O., Schultz, E., Burkhardt, H.: Automated pollen recognition using 3d volume images from fluorescence microscopy. Aerobiologia 18, 107–115 (2002)
Haasdonk, B., Halawani, A., Burkhardt, H.: Adjustable invariant features by partial Haar-integration. In: Proc. of the 17th ICPR, vol. 2, pp. 769–774 (2004)
Haasdonk, B., Keysers, D.: Tangent distance kernels for support vector machines. In: Proc. of the 16th ICPR, vol. 2, pp. 864–868 (2002)
Pozdnoukhov, A., Bengio, S.: Tangent vector kernels for invariant image classification with SVMs. In: Proc. of the 17th ICPR (2004)
Burges, C.J.C.: Geometry and invariance in kernel based methods. In: Advances in Kernel Methods - Support Vector Learning, pp. 89–116. MIT Press, Cambridge (1999)
Chapelle, O., Schölkopf, B.: Incorporating invariances in nonlinear support vector machines. In: NIPS 14, pp. 609–616. MIT-Press, Cambridge (2002)
Schölkopf, B., Simard, P., Smola, A., Vapnik, V.: Prior knowledge in support vector kernels. In: NIPS 10, pp. 640–646. MIT Press, Cambridge (1998)
Schölkopf, B., Burges, C., Vapnik, V.: Incorporating invariances in support vector learning machines. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 47–52. Springer, Heidelberg (1996)
Simard, P., LeCun, Y., Denker, J.: Efficient pattern recognition using a new transformation distance. In: NIPS 5, pp. 50–58. Morgan Kaufmann, San Francisco (1993)
Schölkopf, B., Burges, C., Vapnik, V.: Extracting support data for a given task. In: Proc. of the 1st KDD, pp. 252–257. AAAI Press, Menlo Park (1995)
Ronneberger, O., Pigorsch, F.: LIBSVMTL: a support vector machine template library (2004), http://lmb.informatik.uni-freiburg.de/lmbsoft/libsvmtl/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Haasdonk, B., Vossen, A., Burkhardt, H. (2005). Invariance in Kernel Methods by Haar-Integration Kernels. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds) Image Analysis. SCIA 2005. Lecture Notes in Computer Science, vol 3540. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499145_85
Download citation
DOI: https://doi.org/10.1007/11499145_85
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26320-3
Online ISBN: 978-3-540-31566-7
eBook Packages: Computer ScienceComputer Science (R0)