Nothing Special   »   [go: up one dir, main page]

Skip to main content

Resolution and Pebbling Games

  • Conference paper
Theory and Applications of Satisfiability Testing (SAT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3569))

Abstract

We define a collection of Prover-Delayer games to characterise some subsystems of propositional resolution. We give some natural criteria for the games which guarantee lower bounds on the resolution width. By an adaptation of the size-width tradeoff for resolution of [10] this result also gives lower bounds on proof size.

We also use games to give upper bounds on proof size, and in particular describe a good strategy for the Prover in a certain game which yields a short refutation of the Linear Ordering principle.

Using previous ideas we devise a new algorithm to automatically generate resolution refutations. On bounded width formulas, our algorithm is as least as good as the width based algorithm of [10]. Moreover, it finds short proofs of the Linear Ordering principle when the variables respect a given order.

Finally we approach the question of proving that a formula F is hard to refute if and only if is “almost” satisfiable. We prove results in both directions when “almost satisfiable” means that it is hard to distuinguish F from a satisfiable formula using limited pebbling games.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alekhnovich, M., Ben-Sasson, E., Razborov, A., Wigderson, A.: Space complexity in propositional calculus. SIAM J. Comput. 31(4), 1184–1211 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is not tractable. In: 42nd IEEE Symposium on Foundations of Computer Science, FOCS 2001, pp. 210–219 (2001)

    Google Scholar 

  3. Atserias, A., Dalmau, V.: A combinatorial characterization of Resolution Width. In: 18th IEEE Conference on Computational Complexity (CCC), pp. 239–247 (2003)

    Google Scholar 

  4. Atserias, A., Kolaitis, P., Vardi, M.: Constraint Propagation as a Proof System. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Beame, P., Karp, R.M., Pitassi, T., Saks, M.E.: On the Complexity of Unsatisfiability Proofs for Random k-CNF Formulas. SIAM J. Comput. 31(4), 1048–1075 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Beame, P., Kautz, H.: A Sabharwal Understanding the power of clause learning. In: Proceedings IJCAI, pp. 1194–1201 (2003)

    Google Scholar 

  7. Beame, P., Pitassi, T.: Simplified and Improved Resolution Lower Bounds. In: 37th IEEE Symposium on Foundations of Computer Science, FOCS 1996, pp. 274–282 (1996)

    Google Scholar 

  8. Ben-Sasson, E., Galesi, N.: Space Complexity of Random Formulae in Resolution. In: 16th IEEE Annual Conference on Computational Complexity, CCC 2001, pp. 42–51 (2001)

    Google Scholar 

  9. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of treelike and general Resolution. In: Electronic Colloquium on Computational Complexity (ECCC) TR00-005 (2000) To appear in Combinatorica

    Google Scholar 

  10. Ben-Sasson, E., Wigderson, A.: Short Proofs Are Narrow—Resolution Made Simple. J. ACM 48(2), 149–168 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bonet, M.L., Galesi, N.: Optimality of Size-Width Tradeoffs for Resolution. Computational Complexity 10(4), 261–276 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Esteban, J.L., Galesi, N., Messner, J.: On the Complexity of Resolution with Bounded Conjunctions. Theoretical Computer Science 321(2-3), 347–370 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Esteban, J.L., Torán, J.: Space bounds for Resolution. Inform. and Comput. 171(1), 84–97 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Galesi, N., Thapen, N.: The Complexity of Treelike Systems over λ Local Formuale. In: Proceedings of IEEE Conference on Computational Complexity (2004)

    Google Scholar 

  15. Galesi, N., Thapen, N.: Resolution and Pebbling Games. ECCC Technical Report TR04-112, http://www.eccc.uni-trier.de/eccc-reports/2004/TR04-112/index.html

  16. Haken, A.: The Intractability of Resolution. Theoret. Comp. Sci. 39, 297–308 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krajíček, J.: Bounded arithmetic, propositional logic, and complexity theory, Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  18. Krajíček, J.: On the weak pigeonhole principle. Fund. Math. 170(1-3), 123–140 (2001); J. Symbolic Logic 59(1), 73–86 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pudlak, P.: Proofs as Games. American Math. Monthly 107(6), 541–550 (2000)

    Google Scholar 

  20. Pudlák, P., Impagliazzo, R.: A lower bound for DLL algorithms for k-SAT. In: Conference Proceeding of Symposium on Distributed Algorithms, pp. 128–136 (2000)

    Google Scholar 

  21. Riis, S.: A complexity gap for tree-resolution. Computational Complexity 10(3), 179–209 (2001)

    Article  MathSciNet  Google Scholar 

  22. Urquhart, A.: Hard examples for Resolution. J. ACM 34(1), 209–219 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Galesi, N., Thapen, N. (2005). Resolution and Pebbling Games. In: Bacchus, F., Walsh, T. (eds) Theory and Applications of Satisfiability Testing. SAT 2005. Lecture Notes in Computer Science, vol 3569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499107_6

Download citation

  • DOI: https://doi.org/10.1007/11499107_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26276-3

  • Online ISBN: 978-3-540-31679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics