Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Finding All Minimally Unsatisfiable Subformulas

  • Conference paper
Theory and Applications of Satisfiability Testing (SAT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3569))

Abstract

Much attention has been given in recent years to the problem of finding Minimally Unsatisfiable Subformulas (MUSes) of Boolean formulas. In this paper, we present a new view of the problem, strongly linking it to the maximal satisfiability problem. From this relationship, we have developed a novel technique for extracting all MUSes of a CNF formula, tightly integrat ing our implementation with a modern SAT solver. We also present another algorithm for finding all MUSes, developed independently but based on the same relationship. Experimental comparisons show that our approach is con sistently faster than the other, and we discuss ways in which ideas from both could be combined to improve further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bailey, J., Stuckey, P.J.: Discovery of Minimal Unsatisfiable Subsets of Constraints Using Hitting Set Dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. de la Banda, M., Stuckey, P., Wazny, J.: Finding All Minimal Unsatisfiable Subsets. In: Proc. of the Fifth ACM-SIGPLAN International Conference on Principles and Practice of Declarative Programming (PPDP 2003), pp. 32–43 (2003)

    Google Scholar 

  3. Bruni, R., Sassano, A.: Restoring Satisfiability or Maintaining Unsatisfiability by Finding Small Unsatisfiable Subformulae. Electronic Notes in Discrete Mathematics 9 (2001)

    Google Scholar 

  4. Bruni, R.: Approximating Minimal Unsatisfiable Subformulae by Means of Adaptive Core Search. Discrete Applied Mathematics 130(2), 85–100 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chinneck, J.W., Dravnieks, E.W.: Locating Minimal Infeasible Constraint Sets in Linear Programs. ORSA Journal on Computing 3(2), 157–168 (1991)

    MATH  Google Scholar 

  6. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Huang, J.: MUP: A Minimal Unsatisfiability Prover. In: Proc. of the Tenth Asia and South Pacific Design Automation Conference (ASP-DAC) (January 2005)

    Google Scholar 

  8. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Proc. of a Symposium on the Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  9. Liffiton, M., Andraus, Z., Sakallah, K.: From Max-SAT to Min-UNSAT: Insights and Applications. Technical Report CSE-TR-506-05, University of Michigan (2005)

    Google Scholar 

  10. Oh, Y., Mneimneh, M., Andraus, Z., Sakallah, K., Markov, I.L.: AMUSE: A Minimally-Unsatisfiable Subformula Extractor. In: Proc. of the 41st Annual Conference on Design Automation, pp. 518–523. ACM Press, New York (2004)

    Chapter  Google Scholar 

  11. SAT benchmarks from Automotive Product Configuration, http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/

  12. Sinz, C., Kaiser, A., Küchlin, W.: Formal Methods for the Validation of Automotive roduct Configuration Data. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17(1), 75–97 (2003)

    Article  Google Scholar 

  13. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable Boolean formula. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liffiton, M.H., Sakallah, K.A. (2005). On Finding All Minimally Unsatisfiable Subformulas. In: Bacchus, F., Walsh, T. (eds) Theory and Applications of Satisfiability Testing. SAT 2005. Lecture Notes in Computer Science, vol 3569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499107_13

Download citation

  • DOI: https://doi.org/10.1007/11499107_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26276-3

  • Online ISBN: 978-3-540-31679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics