Abstract
We show how to aggressively add uninferred constraints, in a controlled manner, to formulae for finding Van der Waerden numbers during search. We show that doing so can improve the performance of standard SAT solvers on these formulae by orders of magnitude. We obtain a new and much greater lower bound for one of the Van der Waerden numbers, specifically a bound of 1132 for W(2,6). We believe this bound to actually be the number we seek. The structure of propositional formulae for solving Van der Waerden numbers is similar to that of formulae arising from Bounded Model Checking. Therefore, we view this as a preliminary investigation into solving hard formulae in the area of Formal Verification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27(6), 509–516 (1978)
Beame, P., Pitassi, T.: Simplified and improved resolution lower bounds. In: Proc. 37th Annual Symposium on Foundations of Computer Science, pp. 274–282 (1996)
Beame, P., Karp, R.M., Pitassi, T., Saks, M.: On the complexity of unsatisfiability proofs for random k-CNF formulas. In: Proc. 30th Annual Symposium on the Theory of Computing, pp. 561–571 (1998)
Ben-Sasson, E., Wigderson, A.: Short proofs are narrow - resolution made simple. Journal of the Association for Computing Machinery 48, 149–169 (2001)
Brace, K.S., Rudell, R.R., Bryant, R.E.: Efficient implementation of a BDD package. In: Proc. 27th ACM/IEEE Design Automation Conf., pp. 40–45 (1990)
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Comp. C-35(8), 677–691 (1986)
Burch, J., Clark, E., Long, D.: Symbolic model checking with partitioned transitions relations. In: Halaas, A., Denyer, P.B. (eds.) Intnl. Conf. on VLSI. IFIP Transactions, pp. 49–58. North-Holland, Amsterdam (1991)
Chvátal, V., Szemerédi, E.: Many hard examples for resolution. Journal of the Association for Computing Machinery 35, 759–768 (1988)
Cooke, M.: Van der Waerden numbers, Available from http://home.comcast.net/~rm_cooke/vdw.html
Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. Communications of the Association of Computing Machinery 5, 394–397 (1962)
Dransfield, M.R., Liu, L., Marek, V., Truszczynski, M.: Using Answer-Set Programming to study van der Waerden numbers. Logic and Artificial Intelligence Laboratory, Computer Science Department, College of Enginnering, University of Kentucky (September 2004), Available from http://cs.engr.uky.edu/ai/vdw/
Dransfield, M., Bryant, R.E.: Using ordered binary decision diagrams to solve highly structured satisfiability problems. Unpublished technical report CMU-CS-1996, Carnegie Mellon University (1996)
Galil, Z.: On resolution with clauses of bounded size. SIAM Journal on Computing 6, 444–459 (1977)
Gent, I.P., Walsh, T.: Towards an understanding of hill-climbing procedures for SAT. In: Proc. 11th National Conference on Artificial Intelligence, pp. 28–33 (1993)
Groote, J.F.: Hiding propositional constants in BDDs. Logic Group Preprint Series 120, Utrecht University (1994)
Gu, J.: Efficient local search for very large-scale satisfiability problems. ACM SIGART Bulletin 3(1), 8–12 (1992)
Gu, J., Purdom, P.W., Franco, J., Wah, J.: Algorithms for the Satisfiability problem: a survey. DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 35, pp. 19–151 (1997)
Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308 (1985)
Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell System Technical Journal 38, 985–999 (1959)
McAllester, D., Selman, B., Kautz, H.A.: Evidence for invariants in local search. In: Proc. International Joint Conference on Artificial Intelligence, pp. 321–326 (1997)
Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete Applied Mathematics 10, 117–133 (1983)
Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal of the ACM 12, 23–41 (1965)
Pan, G., Vardi, M.Y.: Search vs. symbolic techniques in satisfiability solving. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 235–250. Springer, Heidelberg (2005)
San Miguel Aguirre, A., Vardi, M.Y.: Random 3-SAT and BDDs: The plot thickens further. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 121–136. Springer, Heidelberg (2001)
Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: Proc. 12th National Conference on Artificial Intelligence, pp. 337–343 (1994)
Somenzi, F.: Colorado University Decision Diagram package, Available from http://vlsi.colorado.edu/~fabio/CUDD/
Song, H.Y., Golomb, S.W., Taylor, H.: Progressions in Every Two-coloration of Z n . Journal of Combinatorial Theory, Series A 61(2), 211–221 (1992)
Rabung, J.R.: Some Progression-Free Partitions Constructed Using Folkman’s Method. Canadian Mathematical Bulletin 22(1), 87–91 (1979)
Urquhart, A.: Hard examples for resolution. Journal of the Association for Computing Machinery 34, 209–219 (1987)
Van der Waerden, B.L.: Beweis einer Baudetschen Veermutung. Nieuw Archief voor Wiskunde 15, 212–216 (1927)
Weaver, S.A., Franco, J., Schlipf, J.S.: Extending Existential Quantification in Conjunctions of BDDs. University of Cincinnati Technical Report
Weisstein, E.W., et al.: van der Waerden Number, From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/vanderWaerdenNumber.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kouril, M., Franco, J. (2005). Resolution Tunnels for Improved SAT Solver Performance. In: Bacchus, F., Walsh, T. (eds) Theory and Applications of Satisfiability Testing. SAT 2005. Lecture Notes in Computer Science, vol 3569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499107_11
Download citation
DOI: https://doi.org/10.1007/11499107_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26276-3
Online ISBN: 978-3-540-31679-4
eBook Packages: Computer ScienceComputer Science (R0)