Abstract
Balanced Oil and Vinegar signature schemes and the unbalanced Oil and Vinegar signature schemes are public key signature schemes based on multivariable polynomials. In this paper, we suggest a new signature scheme, which is a generalization of the Oil-Vinegar construction to improve the efficiency of the unbalanced Oil and Vinegar signature scheme. The basic idea can be described as a construction of multi-layer Oil-Vinegar construction and its generalization. We call our system a Rainbow signature scheme. We propose and implement a practical scheme, which works better than Sflash\(^{v_2}\), in particular, in terms of signature generating time.
Chapter PDF
Similar content being viewed by others
References
Akkar, M.-L., Courtois, N.T., Duteuil, R., Goubin, L.: A fast and secure implementation of Sflash. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 267–278. Springer, Heidelberg (2002)
Courtois, N.T.: The security of hidden field equations (HFE). In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001)
Coppersmith, D., Stern, J., Vaudenay, S.: The security of the birational permutation signature schemes. J. Cryptology 10(3), 207–221 (1997)
Dickson, L.E.: Definite forms in a finite field. Trans. Amer. Math. Soc. 10, 109–122 (1909)
Ding, J., Yin, Z.: Cryptanalysis of TTS and Tame–like signature schemes. In: Third International Workshop on Applied Public Key Infrastructures. Springer, Heidelberg (2004)
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999)
Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999)
Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature verification and message encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)
Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)
Patarin, J.: Hidden field equations (HFE) and isomorphism of polynomials (IP): Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)
Patarin, J., Courtois, N., Goubin, L.: Flash, a fast multivariate signature algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307. Springer, Heidelberg (2001)
Patarin, J., Goubin, L., Courtois, N.: C∗ − + and HM: variations around two schemes of T. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998)
Shamir, A.: Efficient signature schemes based on birational permutations. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)
Wang, L.-C., Hu, Y.-H., Lai, F., Chou, C.-Y., Yang, B.-Y.: Tractable rational map signature. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 244–257. Springer, Heidelberg (2005)
Wolf, C., Braeken, A., Preneel, B.: Efficient cryptanalysis of RSE(2)PKC and RSSE(2)PKC, http://eprint.iacr.org/2004/237
Yang, B., Chen, J.: A more secure and efficacious TTS signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. B. Yang and J. Chen, vol. 2971. Springer, Heidelberg (2004), http://eprint.iacr.org/2003/160
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ding, J., Schmidt, D. (2005). Rainbow, a New Multivariable Polynomial Signature Scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds) Applied Cryptography and Network Security. ACNS 2005. Lecture Notes in Computer Science, vol 3531. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496137_12
Download citation
DOI: https://doi.org/10.1007/11496137_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26223-7
Online ISBN: 978-3-540-31542-1
eBook Packages: Computer ScienceComputer Science (R0)