Nothing Special   »   [go: up one dir, main page]

Skip to main content

Randomized Relaxation Methods for the Maximum Feasible Subsystem Problem

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3509))

Abstract

In the Max FS problem, given an infeasible linear system A xb, one wishes to find a feasible subsystem containing a maximum number of inequalities. This NP-hard problem has interesting applications in a variety of fields. In some challenging applications in telecommunications and computational biology one faces very large Max FS instances with up to millions of inequalities in thousands of variables. We propose to tackle large-scale instances of Max FS using randomized and thermal variants of the classical relaxation method for solving systems of linear inequalities. We present a theoretical analysis of one particular version of such a method in which we derive a lower bound on the probability that it identifies an optimal solution within a given number of iterations. This bound, which is expressed as a function of a condition number of the input data, implies that with probability 1 the randomized method identifies an optimal solution after finitely many iterations. We also present computational results obtained for medium- to large-scale instances arising in the planning of digital video broadcasts and in the modelling of the energy functions driving protein folding. Our experiments indicate that these methods perform very well in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amaldi, E.: The maximum feasible subsystem problem and some applications. In: Agnetis, A., Di Pillo, G. (eds.) Modelli e Algoritmi per l’ottimizzazione di sistemi complessi, Pitagora Editrice Bologna (2003)

    Google Scholar 

  2. Amaldi, E., Hauser, R.: Boundedness theorems for the relaxation method. Under minor revision for Mathematics of Oper. Res., available from Optimization Online

    Google Scholar 

  3. Amaldi, E., Kann, V.: The complexity and approximability of finding maximum feasible subsystems of linear relations. Theoretical Computer Science 147, 181–210 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Amaldi, E., Pfetsch, M.E., Trotter Jr., L.E.: On the maximum feasible subsystem problem, IISs and IIS-hypergraphs. Math. Programming A 95, 533–554 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bennett, K.P., Bredensteiner, E.: A parametric optimization method for machine learning. INFORMS Journal on Computing 9, 311–318 (1997)

    Article  MATH  Google Scholar 

  6. Block, H.D., Levin, S.A.: On the boundedness of an iterative procedure for solving a system of linear inequalities. In: Proceedings of AMS, pp. 229–235 (1970)

    Google Scholar 

  7. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, algorithms and applications. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  8. Chinneck, J.: Fast heuristics for the maximum feasible subsystem problem. INFORMS Journal on Computing 13, 210–213 (2001)

    Article  Google Scholar 

  9. Codato, G., Fischetti, M.: Combinatorial Benders’ cuts. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 178–195. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Dunagan, J., Vempala, S.: A simple polynomial-time rescaling algorithm for solving linear programs. In: Proceedings of STOC, pp. 315–320. ACM Press, New York (2004)

    Google Scholar 

  11. Frean, M.: A “thermal” perceptron learning rule. Neural Comp. 4(6), 946–957 (1992)

    Article  Google Scholar 

  12. Goffin, J.L.: The relaxation method for solving systems of linear inequalities. Mathematics of Oper. Res. 5, 388–414 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Greenberg, H.J., Murphy, F.H.: Approaches to diagnosing infeasible linear programs. ORSA Journal on Computing 3, 253–261 (1991)

    MATH  Google Scholar 

  14. Lee, E.K., Gallagher, R.J., Zaider, M.: Planning implants of radionuclides for the treatment of prostate cancer: An application of MIP. Optima 61, 1–7 (1999)

    Google Scholar 

  15. Mangasarian, O.: Machine learning via polyhedral concave minimization. In: Fischer, H., et al. (eds.) Applied Mathematics and Parallel Computing, pp. 175–188. Physica-Verlag, Heidelberg (1996)

    Google Scholar 

  16. Mattavelli, M., Noel, V., Amaldi, E.: Fast line detection algorithms based on combinatorial optimization. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 410–419. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  17. Meller, J., Wagner, M., Elber, R.: Solving huge linear programming problems for the design of protein folding potentials. Math. Programming B 101, 301–318 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Minsky, M.L., Papert, S.: Perceptrons: An introduction to computational Geometry Expanded edition. MIT Press, Cambridge (1988)

    MATH  Google Scholar 

  19. Nedić, A., Bertsekas, D.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. on Optimization 12, 109–138 (2001)

    Article  MATH  Google Scholar 

  20. Pfetsch, M.E.: The maximum feasible subsystem problem and vertex-facet incidences of polyhedra. PhD thesis, Dep. of Mathematics, Technische Universität Berlin (October 2002)

    Google Scholar 

  21. Polyak, B.T.: Random algorithms for solving convex inequalities. In: Butnariu, D., et al. (eds.) Inherently parallel algorithms in feasibility and other applications. Elsevier, Amsterdam (2001)

    Google Scholar 

  22. Rossi, F., Sassano, A., Smriglio, S.: Models and algorithms for terrestrial digital broadcasting. Ann. of Oper. Res. 107(3), 267–283 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schrijver, A.: Theory of Linear and Integer Programming. Wiley & Sons, Chichester (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amaldi, E., Belotti, P., Hauser, R. (2005). Randomized Relaxation Methods for the Maximum Feasible Subsystem Problem. In: Jünger, M., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2005. Lecture Notes in Computer Science, vol 3509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496915_19

Download citation

  • DOI: https://doi.org/10.1007/11496915_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26199-5

  • Online ISBN: 978-3-540-32102-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics