Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Evolutionary Algorithm to Improve the Nonlinearity of Self-inverse S-Boxes

  • Conference paper
Information Security and Cryptology – ICISC 2004 (ICISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3506))

Included in the following conference series:

Abstract

Self-inverse S-Boxes have been given much attention in the design of block ciphers recently. In this paper, based on Walsh Hadamard transform of Boolean functions, an evolutionary algorithm is investigated to increase the nonlinearity of self-inverse S-Boxes. The improved S-Boxes still remain self-inverse. Under this algorithm, randomly generated self-inverse S-Boxes can easily evolve into the ones with much higher nonlinearity.

This work was supported by Chinese Natural Science Foundation (Grant No.60373047 and 60025205) and 863 Project (Grant No. 2003AA14403).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barreto, P.S.L.M., Rijmen, V.: The ANUBIS Block Cipher, http://planeta.terra.com.br/informatica/paulobarreto/AnubisPage.html

  2. Chen, H., Feng, D.: An Effective Evolutionary Strategy for Bijective S-Boxes. In: Proceedings of the IEEE Congress on Evolutionary Computation 2004 (CEC 2004), Portland Oregon, June 20-23, pp. 2120–2123 (2004)

    Google Scholar 

  3. Chen, H., Feng, D., Wu, W.: An effective algorithm for improving the cryptographic properties of bijective S-Boxes. Journal of Computer Research and Development 41(8), 1410–1414 (2004)

    Google Scholar 

  4. Feng, D.-g., Wu, W.-l.: Designing And Analysis of Block Cipher, pp. 67–69. Tsinghua University Press, Beijing (2000)

    Google Scholar 

  5. Fuller, J., Millan, W., Dawson, E.: Multi-objective Optimisation of Bijective S-Boxes. In: Proceedings of the IEEE Congress on Evolutionary Computation 2004 (CEC 2004), Portland Oregon, June 20-23, pp. 1525–1532 (2004)

    Google Scholar 

  6. Kim, K., Matsumoto, T., Imai, H.: A Recursive Construction Method of S-Boxes Satisfying Strict Avalanche Criterion. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 564–574. Springer, Heidelberg (1991)

    Google Scholar 

  7. Millan, W., Burnett, L., Carter, G., Clark, A., Dawson, E.: Evolutionary Heuristics for Finding Cryptographically Strong S-Boxes. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 263–274. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Millan, W.: How to Improve the Nonlinearity of Bijective S-Boxes. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 181–192. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Nyberg, K.: Perfect Nonlinear S-Boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)

    Google Scholar 

  10. Nyberg, K.: On the Construction of Highly Nonlinear Permutations. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92–98. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  11. Pieprzyk, J.: Non-linearity of Exponent Permutations. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 81–92. Springer, Heidelberg (1990)

    Google Scholar 

  12. Pieprzyk, J.: Bent Permutations. In: International Conference on Finite Fields, Coding Theory and Advances in Communications, Las Vegas, pp. 173–181 (1991)

    Google Scholar 

  13. Pieprzyk, J., Finkelstein, G.: Permutations that Maximise Non-Linearity and their Cryptographic Significance. In: Proceedings of Fifth IFIP International Conference on Computer Security IFIP/SEC 1988, pp. 63–74 (1988)

    Google Scholar 

  14. Pieprzyk, J., Finkelstein, G.: Towards Effective Nonlinear Cryptosystem Design. IEE Proceedings, Pt E. 135(6), 325–335 (1988)

    Google Scholar 

  15. Webster, A.F., Tavares, S.E.: On the Design of S-Boxes. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)

    Google Scholar 

  16. Seberry, J., Zhang, X.-M., Zheng, Y.: Systematic Generation of Cryptographically Robust S-Boxes. In: Proceedings of the First ACM Conference on Computer and Communications Security, pp. 171–182 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, H., Feng, D. (2005). An Evolutionary Algorithm to Improve the Nonlinearity of Self-inverse S-Boxes. In: Park, Cs., Chee, S. (eds) Information Security and Cryptology – ICISC 2004. ICISC 2004. Lecture Notes in Computer Science, vol 3506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496618_26

Download citation

  • DOI: https://doi.org/10.1007/11496618_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26226-8

  • Online ISBN: 978-3-540-32083-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics