Nothing Special   »   [go: up one dir, main page]

Skip to main content

Extremal Throughputs in Free-Choice Nets

  • Conference paper
Applications and Theory of Petri Nets 2005 (ICATPN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3536))

Included in the following conference series:

Abstract

We give a method to compute the throughput in a timed live and bounded free-choice Petri net under a total allocation (i.e. a 0-1 routing). We also characterize and compute the conflict-solving policies that achieve the smallest throughput in the special case of a 1-bounded net. They do not correspond to total allocations, but still have a small period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity. John Wiley & Sons, New York (1992)

    MATH  Google Scholar 

  2. Bouillard, A., Gaujal, B., Mairesse, J.: Extremal throughput in free-choice nets. Research Report RR LIP 2005-14, ENS Lyon, France (2005)

    Google Scholar 

  3. Carlier, J., Chretienne, P.: Timed Petri net schedules. In: Rozenberg, G. (ed.) APN 1988. LNCS, vol. 340, pp. 62–84. Springer, Heidelberg (1988)

    Google Scholar 

  4. Chretienne, P.: Les Réseaux de Petri Temporisés. PhD thesis, Université Paris VI, Paris (1983)

    Google Scholar 

  5. Cohen, G., Dubois, D., Quadrat, J.P., Viot, M.: A linear system-theoretic view of discrete-event processes and its use for performance evaluation in manufacturing. IEEE Trans. Automatic Control 30, 210–220 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Desel, J., Esparza, J.: Free Choice Petri Nets. In: Cambridge Tracts in Theoretical Comp. Sc., vol. 40. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  7. Gaubert, S., Mairesse, J.: Modeling and analysis of timed Petri nets using heaps of pieces. IEEE Trans. Aut. Cont. 44(4), 683–698 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gaujal, B., Haar, S., Mairesse, J.: Blocking a transition in a free-choice net and what it tells about its throughput. Journal of Computer and System Sciences 66(3), 515–548 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mairesse, J., Vuillon, L.: Asymptotic behavior in a heap model with two pieces. Theoret. Comput. Sci. 270, 525–560 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouillard, A., Gaujal, B., Mairesse, J. (2005). Extremal Throughputs in Free-Choice Nets. In: Ciardo, G., Darondeau, P. (eds) Applications and Theory of Petri Nets 2005. ICATPN 2005. Lecture Notes in Computer Science, vol 3536. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494744_8

Download citation

  • DOI: https://doi.org/10.1007/11494744_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26301-2

  • Online ISBN: 978-3-540-31559-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics