Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ensemble of SVMs for Incremental Learning

  • Conference paper
Multiple Classifier Systems (MCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3541))

Included in the following conference series:

Abstract

Support Vector Machines (SVMs) have been successfully applied to solve a large number of classification and regression problems. However, SVMs suffer from the catastrophic forgetting phenomenon, which results in loss of previously learned information. Learn + +  have recently been introduced as an incremental learning algorithm. The strength of Learn + +  lies in its ability to learn new data without forgetting previously acquired knowledge and without requiring access to any of the previously seen data, even when the new data introduce new classes. To address thecatastrophic forgetting problem and to add the incremental learning capability to SVMs, we propose using an ensemble of SVMs trained with Learn + + . Simulation results on real-world and benchmark datasets suggest that the proposed approach is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  2. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Grossberg, S.: Nonlinear neural networks: principles, mechanisms and architectures. Neural Networks 1(1), 17–61 (1988)

    Article  MathSciNet  Google Scholar 

  4. French, R.: Catastrophic forgetting in connectionist networks: Causes, Consequences and Solutions. Trends in Cognitive Sciences 3(4), 128–135 (1999)

    Article  MathSciNet  Google Scholar 

  5. Polikar, R., Udpa, L., Udpa, S., Honavar, V.: Learn++: An incremental learning algorithm for multilayer perceptrons. In: Proceedings of 25th. IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey, vol. 6, pp. 3414–3417 (2000)

    Google Scholar 

  6. Polikar, R., Udpa, L., Udpa, S., Honavar, V.: Learn++: An incremental learning algorithm for supervised neural networks. IEEE Transactions on Systems, Man, and Cybernetics. Part C: Applications and Reviews 31(4), 497–508 (2001)

    Article  Google Scholar 

  7. Freund, Y., Schapire, R.: A decision theoretic generalization of on-line learning and an application to boosting. Computer and System Sciences 57(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  8. Kasabov, N.: Evolving Connectionist Systems: Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  9. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Domeniconi, C., Gunopulos, D.: Incremental Support Machine Construction. In: Proceedings of First IEEE Int. Conf. on Data Mining (ICDM 2001), pp. 589–592 (2001)

    Google Scholar 

  11. Mitra, P., Murthy, C.A., Pal, S.K.: Data condensation in large databases by incremental learning with support vector machines. In: Proceedings of 15th International Conference on Pattern Recognition, September 3-7, vol. 2, pp. 708–711 (2000)

    Google Scholar 

  12. Li, K., Huang, H.-K.: Incremental learning proximal support vector machine classifiers. In: Proceedings of International Conference on Machine Learning and Cybernetics, November 4-5, vol. 3, pp. 1635–1637 (2002)

    Google Scholar 

  13. An, J.-L., Wang, Z.-O., Ma, Z.-P.: An incremental learning algorithm for support vector machine. In: Proceedings of International Conference on Machine Learning and Cybernetics, November 2-5, vol. 2, pp. 1153–1156 (2003)

    Google Scholar 

  14. Li, Z.-W., Zhang, J.-P., Yang, J.: A heuristic algorithm to incremental support vector machine learning. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, August 26-29, vol. 3, pp. 1764–1767 (2004)

    Google Scholar 

  15. Pavlov, D., Mao, J., Dom, B.: Scaling-up Support Vector Machines using The Boosting Algorithm. In: Proceedings of the International Conference on Pattern Recognition, Barcelona, Spain, September 3-7, pp. 19–22 (2000)

    Google Scholar 

  16. Valentini, G., Muselli, M., Ruffino, F.: Cancer Recognition with Bagged Ensembles of Support Vector Machines. Neurocomputing 56(1), 461–466 (2004)

    Article  Google Scholar 

  17. Valentini, G., Muselli, M., Ruffino, F.: Bagged Ensembles of SVMs for Gene Expression Data Analysis. In: Proceeding of the International Joint Conference on Neural Networks, Portland, OR, USA, July 20-24, pp. 1844–1849 (2003)

    Google Scholar 

  18. Kim, H.-C., Pang, S., Je, H.-M., Kim, D., Bang, S.Y.: Constructing Support Vector Machine Ensemble. Pattern Recognition 36, 2757–2767 (2003)

    Article  MATH  Google Scholar 

  19. Duan, K., Keerthi, S.S., Poo, A.N.: Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing 51, 41–59 (2003)

    Article  Google Scholar 

  20. Muhlbaier, M., Topalis, A., Polikar, R.: Learn++.MT: A New Approach to Incremental Learning. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 52–61. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erdem, Z., Polikar, R., Gurgen, F., Yumusak, N. (2005). Ensemble of SVMs for Incremental Learning. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2005. Lecture Notes in Computer Science, vol 3541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494683_25

Download citation

  • DOI: https://doi.org/10.1007/11494683_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26306-7

  • Online ISBN: 978-3-540-31578-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics