Nothing Special   »   [go: up one dir, main page]

Skip to main content

Scaling the Kernel Function to Improve Performance of the Support Vector Machine

  • Conference paper
Advances in Neural Networks – ISNN 2005 (ISNN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3496))

Included in the following conference series:

Abstract

The present study investigates a geometrical method for optimizing the kernel function of a support vector machine. The method is an improvement of the one proposed in [4,5]. It consists of using prior knowledge obtained from conventional SVM training to conformally rescale the initial kernel function, so that the separation between two classes of data is effectively enlarged. It turns out that the new algorithm works efficiently, has few free parameters, consumes very low computational cost, and overcomes the susceptibility of the original method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  2. Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  3. Burges, C.: Geometry and Invariance in Kernel Based Method. In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods, pp. 89–116. MIT Press, Cambridge (1999)

    Google Scholar 

  4. Amari, S., Wu, S.: Improving Support Vector Machine Classifiers by Modifying Kernel Functions. Neural Networks 12, 783–789 (1999)

    Article  Google Scholar 

  5. Wu, S., Amari, S.: Conformal Transformation of Kernel Functions: A Data- Dependent Way to Improve Support Vector Machine Classifiers. Neural Processing Letters 15, 59–67 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Williams, P., Li, S., Feng, J., Wu, S. (2005). Scaling the Kernel Function to Improve Performance of the Support Vector Machine. In: Wang, J., Liao, X., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427391_133

Download citation

  • DOI: https://doi.org/10.1007/11427391_133

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25912-1

  • Online ISBN: 978-3-540-32065-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics