Nothing Special   »   [go: up one dir, main page]

Skip to main content

Sliding Mode Control for Uncertain Nonlinear Systems Using RBF Neural Networks

  • Conference paper
Advances in Neural Networks – ISNN 2005 (ISNN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3498))

Included in the following conference series:

Abstract

A robust sliding mode adaptive tracking controller using RBF neural networks is proposed for uncertain SISO nonlinear dynamical systems with unknown nonlinearity. The Lyapunov synthesis approach and sliding mode method are used to develop a state-feedback adaptive control algorithm by using RBF neural networks. Furthermore, the H ∞ tracking design technique and the sliding mode control method are incorporated into the adaptive neural networks control scheme so that the derived controller is robust with respect to disturbances and approximate errors. Compared with conventional methods, the proposed approach assures closed-loop stability and guarantees an H ∞  tracking performance for the overall system. Simulation results verify the effectiveness of the designed scheme and the theoretical discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Polycarpou, M.: Stable Adaptive Neural Control Scheme for Nonlinear Systems. IEEE Trans. Automat. Contr. 41, 447–451 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Li, Y.H., Qang, Y., Zhuang, X.Y., Kaynak, O.: Robust and Adaptive Backstepping Control for Nonlinear Systems Using RBF Neural Networks. IEEE Trans. Neural Networks 15, 693–701 (2004)

    Article  Google Scholar 

  3. Leu, Y.G., Wang, W.Y., Lee, T.T.: Robust Adaptive Fuzzy-Neural Controllers for Uncertain Nonlinear Systems. IEEE Trans. Robot. Automat. 15, 805–817 (1999)

    Article  Google Scholar 

  4. Tzirkel-Hancock, E., Fallside, F.: Stable Control of Nonlinear Systems Using Neural Networks. Int. J. Robust Nonlinear Control 2, 63–86 (1992)

    Article  MATH  Google Scholar 

  5. Lue, Y.G., Lee, T.T., Wang, W.Y.: Observer-Based Adaptive Fuzzy Neural Control for Unknown Nonlinear Dynamical Systems. IEEE Trans. Syst., Man, Cybern. B 29, 583–591 (1999)

    Article  Google Scholar 

  6. Ge, S.S., Wang, C.: Direct Adaptive NN Control of a Class of Nonlinear Systems. IEEE Trans. Neural Networks 13, 214–221 (2002)

    Article  Google Scholar 

  7. Yoo, B., Ham, W.: Adaptive Fuzzy Sliding Mode Control of Nonlinear System. IEEE Trans. Fuzzy Syst. 6, 315–321 (1998)

    Article  Google Scholar 

  8. Park, J.H., Seo, S.J., Park, G.T.: Robust Adaptive Fuzzy Controller for Nonlinear System Using Estimation of Bounds for Approximation Errors. Fuzzy Sets and Systems 133, 19–36 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sanner, R.M., Slotine, J.J.E.: Gaussian Networks for Direct Adaptive Control. IEEE Trans. Neural Networks 3, 837–863 (1992)

    Article  Google Scholar 

  10. Yang, Y.S., Zhou, C.J., Ren, J.S.: Model Reference Adaptive Robust Fuzzy Control for Ship Steering Autopilot with Uncertain Nonlinear Systems. Applied Soft Computing 3, 305–316 (2003)

    Article  Google Scholar 

  11. Chen, B.S., Lee, C.H., Chang, Y.C.: H ∞  Tracking Design of Uncertain Nonlinear SISO Systems: Adaptive Fuzzy Approach. IEEE Trans. Fuzzy Syst. 4, 32–43 (1996)

    Article  Google Scholar 

  12. Wang, W.Y., Chan, M.L., Hsu, C.C.J., Lee, T.T.: H ∞  Tracking-Based Sliding Mode Control for Uncertain Nonlinear Systems via an Adaptive Fuzzy-Neural Approach. IEEE Trans. Syst., Man, Cybern. B 32, 483–491 (2002)

    Article  Google Scholar 

  13. Wang, L.X.: Stable Adaptive Fuzzy Controllers with Application to Inverted Pendulum Tracking. IEEE Trans. Syst., Man Cybern. B 26, 677–691 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zha, X., Cui, P. (2005). Sliding Mode Control for Uncertain Nonlinear Systems Using RBF Neural Networks. In: Wang, J., Liao, XF., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427469_4

Download citation

  • DOI: https://doi.org/10.1007/11427469_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25914-5

  • Online ISBN: 978-3-540-32069-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics