Nothing Special   »   [go: up one dir, main page]

Skip to main content

Gene Network Prediction from Microarray Data by Association Rule and Dynamic Bayesian Network

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3482))

Included in the following conference series:

Abstract

Using microarray technology to predict gene function has become important in research. However, microarray data are complicated and require a powerful systematic method to handle these data. Many scholars use clustering algorithms to analyze microarray data, but these algorithms can find only the same expression mode, not the transcriptional relation between genes. Moreover, most traditional approaches involve all-against-all comparisons that are time consuming. To reduce the comparison time and find more relations, a proposed method is to use an a priori algorithm to filter possible related genes first, which can reduce number of candidate genes, and then apply a dynamic Bayesian network to find the gene’s interaction. Unlike the previous techniques, this method not only reduces the comparison complexity but also reveals more mutual interaction among genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.F., Gandrillon, O.: Strong-association-rule mining for large-scale gene-expression data analysis: a case study o human SAGE data. Genome Biol 12, 1–16 (2003)

    Google Scholar 

  2. Creighton, C., Hanash, S.: Mining gene expression databases for association rules. Bioinformatics 19, 79–86 (2003)

    Article  Google Scholar 

  3. Doddi, S., Marathe, A., Ravi, S.S., Torney, D.C.: Discovery of association rules in medical data. Med Information Internet Med. 26, 25–33 (2001)

    Article  Google Scholar 

  4. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Science (USA?) 95, 14863–14868 (1998)

    Article  Google Scholar 

  5. Eisenberg, D., Marcotte, M.E., Xenarios, I., Yeates, O.T.: Protein function in the post-genomic era. Nature 405, 823–826 (2000)

    Article  Google Scholar 

  6. Ewing, B., Green, P.: Analysis of expressed sequence tags indicates 35,000 human genes. Nature Genet 25, 232–234 (2000)

    Article  Google Scholar 

  7. Hieter, P., Boguski, M.: Functional genomics: it’s all how you read it. Science 278, 601–602 (1997)

    Article  Google Scholar 

  8. Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using Dynamic Bayesian Networks. Briefing Bioinformatics 4(3), 228–235 (2003)

    Article  Google Scholar 

  9. Kim, S.Y., Imoto, S., Miyano, S.: Dynamic Bayesian networks and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems 75, 57–65 (2004)

    Article  Google Scholar 

  10. Murphy, K., Mian, S.: Modeling gene expression data using dynamic Bayesian networks. Technical Report, Computer Science Division, University of California, Berkeley, CA (1999)

    Google Scholar 

  11. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R.: Interpreting patterns of gene expression with self-organizing maps methods and application to hematopoietic differentiation. Nature Genetics 96, 2907–2912 (1999)

    Google Scholar 

  12. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)

    Article  Google Scholar 

  13. Torgeir, R.H., Astrid, L., Jan, K.: Learning rule-based models of biological process from gene expression time profiles using Gene Ontology. Bioinformatics 19, 1116–1123 (2002)

    Google Scholar 

  14. Zou, M., Conzen, S.D.: A new dynamic Bayesian network approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 1–29 (Advance Access published on August 12, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, HC., Lee, YS. (2005). Gene Network Prediction from Microarray Data by Association Rule and Dynamic Bayesian Network. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424857_34

Download citation

  • DOI: https://doi.org/10.1007/11424857_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25862-9

  • Online ISBN: 978-3-540-32045-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics