Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New and Efficient K-Medoid Algorithm for Spatial Clustering

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3482))

Included in the following conference series:

Abstract

A new k-medoids algorithm is presented for spatial clustering in large applications. The new algorithm utilizes the TIN of medoids to facilitate local computation when searching for the optimal medoids. It is more efficient than most existing k-medoids methods while retaining the exact the same clustering quality of the basic k-medoids algorithm. The application of the new algorithm to road network extraction from classified imagery is also discussed and the preliminary results are encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bourke, P.: Efficient Triangulation Algorithm Suitable for Terrain Modeling (1989), http://astronomy.swin.edu.au/~pbourke/terrain/triangulate/ (accessed on December 10, 2004)

  2. Doucette, P., Agouris, P., Musavi, M., Stefanidis, A.: Automated Extraction of Linear Features from Aerial Imagery Using Kohonen Learning and GIS Data. In: Agouris, P., Stefanidis, A. (eds.) ISD 1999. LNCS, vol. 1737, pp. 20–33. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Doucette, P., Agouris, P., Stefanidis, A., Musavi, M.: Self-Organised Clustering for Road Extraction in Classified Imagery. ISPRS Journal of Photogrammetry & Remote Sensing 55, 347–358 (2001)

    Article  Google Scholar 

  4. Fortune, S.: A Sweepline Algorithm for Voronoï Diagrams. Algorithmica 2(2), 153–174 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Guo, D., Peuquet, D., Gahegan, M.: ICEAGE: Interactive Clustering and Exploration of Large and High-dimensional Geodata. GeoInformatica 7(3), 229–253 (2003)

    Article  MATH  Google Scholar 

  6. Han, J., Kamber, M., Tung, A.: Spatial clustering methods in data mining: A survey. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery. Taylor & Francis Inc., London (2001)

    Google Scholar 

  7. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wilsy & Sons (1990)

    Google Scholar 

  8. Lawson, C.L.: Software for C1 Surface Interpolation. In: Rice, J.R. (ed.) Mathematical Software III, pp. 161–194. Academic Press, New York (1977)

    Google Scholar 

  9. Lee, D.T., Schachter, B.J.: Two Algorithms for Constructing a Delaunay Triangulation. International Journal of Computer and Information Sciences 9(3), 219–242 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ng, R., Han, J.: Efficient and Effective Clustering Methods for Spatial Data Mining. In: Proc. 20th International Conference on Very Large Databases, Santiago, Chile (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Q., Couloigner, I. (2005). A New and Efficient K-Medoid Algorithm for Spatial Clustering. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424857_20

Download citation

  • DOI: https://doi.org/10.1007/11424857_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25862-9

  • Online ISBN: 978-3-540-32045-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics