Abstract
A new k-medoids algorithm is presented for spatial clustering in large applications. The new algorithm utilizes the TIN of medoids to facilitate local computation when searching for the optimal medoids. It is more efficient than most existing k-medoids methods while retaining the exact the same clustering quality of the basic k-medoids algorithm. The application of the new algorithm to road network extraction from classified imagery is also discussed and the preliminary results are encouraging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bourke, P.: Efficient Triangulation Algorithm Suitable for Terrain Modeling (1989), http://astronomy.swin.edu.au/~pbourke/terrain/triangulate/ (accessed on December 10, 2004)
Doucette, P., Agouris, P., Musavi, M., Stefanidis, A.: Automated Extraction of Linear Features from Aerial Imagery Using Kohonen Learning and GIS Data. In: Agouris, P., Stefanidis, A. (eds.) ISD 1999. LNCS, vol. 1737, pp. 20–33. Springer, Heidelberg (1999)
Doucette, P., Agouris, P., Stefanidis, A., Musavi, M.: Self-Organised Clustering for Road Extraction in Classified Imagery. ISPRS Journal of Photogrammetry & Remote Sensing 55, 347–358 (2001)
Fortune, S.: A Sweepline Algorithm for Voronoï Diagrams. Algorithmica 2(2), 153–174 (1987)
Guo, D., Peuquet, D., Gahegan, M.: ICEAGE: Interactive Clustering and Exploration of Large and High-dimensional Geodata. GeoInformatica 7(3), 229–253 (2003)
Han, J., Kamber, M., Tung, A.: Spatial clustering methods in data mining: A survey. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery. Taylor & Francis Inc., London (2001)
Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wilsy & Sons (1990)
Lawson, C.L.: Software for C1 Surface Interpolation. In: Rice, J.R. (ed.) Mathematical Software III, pp. 161–194. Academic Press, New York (1977)
Lee, D.T., Schachter, B.J.: Two Algorithms for Constructing a Delaunay Triangulation. International Journal of Computer and Information Sciences 9(3), 219–242 (1980)
Ng, R., Han, J.: Efficient and Effective Clustering Methods for Spatial Data Mining. In: Proc. 20th International Conference on Very Large Databases, Santiago, Chile (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Q., Couloigner, I. (2005). A New and Efficient K-Medoid Algorithm for Spatial Clustering. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424857_20
Download citation
DOI: https://doi.org/10.1007/11424857_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25862-9
Online ISBN: 978-3-540-32045-6
eBook Packages: Computer ScienceComputer Science (R0)