Nothing Special   »   [go: up one dir, main page]

Skip to main content

Many-to-Many Feature Matching in Object Recognition

  • Chapter
Cognitive Vision Systems

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3948))

Abstract

One of the bottlenecks of current recognition (and graph matching) systems is their assumption of one-to-one feature (node) correspondence. This assumption breaks down in the generic object recognition task where, for example, a collection of features at one scale (in one image) may correspond to a single feature at a coarser scale (in the second image). Generic object recognition therefore requires the ability to match features many-to-many. In this paper, we will review our progress on three independent object recognition problems, each formulated as a graph matching problem and each solving the many-to-many matching problem in a different way. First, we explore the problem of learning a 2-D shape class prototype (represented as a graph) from a set of object exemplars (also represented as graphs) belonging to the class, in which there may be no one-to-one correspondence among extracted features. Next, we define a low-dimensional, spectral encoding of graph structure and use it to match entire subgraphs whose size can be different. Finally, in very recent work, we embed graphs into geometric spaces, reducing the many-to-many graph matching problem to a weighted point matching problem, for which efficient many-to-many matching algorithms exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shokoufandeh, A., Keselman, Y., Demirci, F., Macrini, D., Dickinson, S. (2006). Many-to-Many Feature Matching in Object Recognition. In: Christensen, H.I., Nagel, HH. (eds) Cognitive Vision Systems. Lecture Notes in Computer Science, vol 3948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11414353_8

Download citation

  • DOI: https://doi.org/10.1007/11414353_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33971-7

  • Online ISBN: 978-3-540-33972-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics