Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Parallel Algorithm for Automatic Particle Identification in Electron Micrographs

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2004 (VECPAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3402))

  • 576 Accesses

Abstract

Three dimensional reconstruction of large macromolecules like viruses at resolutions below 10 Å requires a large set of projection images. Several automatic and semi-automatic particle detection algorithms have been developed along the years. We have developed a general technique designed to automatically identify the projection images of particles. The method is based on Markov random field modelling of the projected images and involves a preprocessing of electron micrographs followed by image segmentation and post processing. In this paper we discuss the basic ideas of the sequential algorithm and outline a parallel implementation of it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, T.S., Olson, N.H., Fuller, S.D.: Adding the third dimension to virus life cycles: Three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiology and Molecular Biology Reviews 63(4), 862–922 (1999)

    Google Scholar 

  2. Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society 48(3), 259–302 (1986)

    MATH  MathSciNet  Google Scholar 

  3. Bouman, C., Shapiro, M.: A multiscale random field model for Bayesian image segmentation. IEEE Trans. on Image Processing 3(2), 162–177 (1994)

    Article  Google Scholar 

  4. Crowther, R.A., DeRosier, D.J., Klug, A.: The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. In: Proc. of the Royal Society of London, vol. A 317, pp. 319–340 (1970)

    Google Scholar 

  5. Frank, J., Wagenkknecht, T.: Automatic selection of molecular images from electron micrographs. In: Ultramicroscopy, vol. 2(3), pp. 169–175 (1983-1984)

    Google Scholar 

  6. Gonzales, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  7. Harauz, G., Lochovsky, F.A.: Automatic selection of macromolecules from electron micrographs. Ultramicroscopy 31, 333–344 (1989)

    Article  Google Scholar 

  8. Heijmans, H.J.A.M.: Morphological image operators. Academic Press, Boston (1994)

    MATH  Google Scholar 

  9. Kirkpatrick, S., Gelart Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 31, 671–680 (1983)

    Article  Google Scholar 

  10. Martin, I.A.B., Marinescu, D.C., Lynch, R.E., Baker, T.S.: Identification of spherical virus particles in digitized images of entire electron micrographs. Journal of Structural Biology 120, 146–157 (1997)

    Article  Google Scholar 

  11. Nicholson, W.V., Glaeser, R.M.: Review: automatic particle detection in electron microscopy. Journal of Structural Biology 133, 90–101 (2001)

    Article  Google Scholar 

  12. Nogales, E., Grigorieff, N.: Molecular machines: putting the pieces together. Journal of Cell Biology 152, F1–F10 (2001)

    Google Scholar 

  13. Otsu, N.: A threshold selection method from gray level histogram. IEEE Trans. on Systems Man and Cybernetics SMC-8, 62–66 (1979)

    Google Scholar 

  14. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  15. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. In: Proc. of the IEEE, vol. 77(2), pp. 257–286 (1989)

    Google Scholar 

  16. Ramani Lata, K., Penczek, P., Frank, J.: Automatic particle picking from electron micrographs. Ultramicroscopy 58, 381–391 (1995)

    Article  Google Scholar 

  17. Singh, V., Marinescu, D.C., Baker, T.S.: Image segmentation for automatic particle identification in electron micrographs based on hidden Markov random field models and expectation maximization. Journal of Structural Biology 145(1-2), 123–141 (2004)

    Article  Google Scholar 

  18. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  19. Thuman-Commike, P.A., Chiu, W.: Reconstruction principles of icosahedral virus structure determination using electron cryomicroscopy. Micron 31, 687–711 (2000)

    Article  Google Scholar 

  20. van Heel, M.: Detection of objects in quantum-noise-limited images. Ultramicroscopy 7(4), 331–341 (1982)

    Article  Google Scholar 

  21. van Heel, M., Gowen, B., Matadeen, R., Orlova, E.V., Finn, R., Pape, T., Cohen, D., Stark, H., Schmidt, R., Schatz, M., Patwardhan, A.: Single-particle electron cryo-microscopy: towards atomic resolution. Quarterly Reviews of Biophysics 33(4), 307–369 (2000)

    Article  Google Scholar 

  22. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  23. Zhang, Y., Smith, S., Brady, M.: Segmentation of brain MRI images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. on Medical Imaging 20(1), 45–57 (2001)

    Google Scholar 

  24. Zhu, Y., Carragher, B., Kriegman, D., Milligan, R.A., Potter, C.S.: Automated identification of filaments in cryoelectron microscopy images. Journal of Structural Biology 135(3), 302–312 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Singh, V., Ji, Y., Marinescu, D.C. (2005). A Parallel Algorithm for Automatic Particle Identification in Electron Micrographs. In: Daydé, M., Dongarra, J., Hernández, V., Palma, J.M.L.M. (eds) High Performance Computing for Computational Science - VECPAR 2004. VECPAR 2004. Lecture Notes in Computer Science, vol 3402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11403937_28

Download citation

  • DOI: https://doi.org/10.1007/11403937_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25424-9

  • Online ISBN: 978-3-540-31854-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics