Nothing Special   »   [go: up one dir, main page]

Skip to main content

First Order Logic with Domain Conditions

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2758))

Included in the following conference series:

Abstract

This paper addresses the crucial issue in the design of a proof development system of how to deal with partial functions and the related question of how to treat undefined terms. Often the problem is avoided by artificially making all functions total. However, that does not correspond to the practice of everyday mathematics.

In type theory partial functions are modeled by giving functions extra arguments which are proof objects. In that case it will not be possible to apply functions outside their domain. However, having proofs as first class objects has the disadvantage that it will be unfamiliar to most mathematicians. Also many proof tools (like the theorem prover Otter) will not be usable for such a logic. Finally expressions get difficult to read because of these proof objects.

The PVS system solves the problem of partial functions differently. PVS generates type-correctness conditions (TCCs) for statements in its language. These are proof obligations that have to be satisfied ‘on the side’ to show that statements are well-formed.

We propose a TCC-like approach for the treatment of partial functions in type theory. We add domain conditions (DCs) to classical first-order logic and show the equivalence with a first order system that treats partial functions in the style of type theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beeson, M.J.: Foundations of constructive mathematics. Springer, Heidelberg (1985)

    MATH  Google Scholar 

  2. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Development System. Prentice-Hall, NJ (1986)

    Google Scholar 

  3. Finn, S., Fourman, M., Longley, J.: Partial Functions in a Total Setting. Journal of Automated Reasoning 18, 85–104 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Geuvers, H., Wiedijk, F., Zwanenburg, J.: Equational Reasoning via Partial Reflection. In: Aagaard, M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 162–178. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  6. Guttman, J.D., Thayer, F.J.: IMPS: An Interactive Mathematical Proof System. Journal of Automated Reasoning 11, 213–248 (1993)

    Article  MATH  Google Scholar 

  7. Harrison, J.: Re: Undefined terms. Message <"swan.cl.cam.:266770:950519095422"@cl.cam.ac.uk> as sent to the QED mailing list (1995), http://www.ftp.cl.cam.ac.uk/ftp/hvg/qed-project-archive/03xx/0380

  8. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  9. Kuper, J.: Partiality in Logic and Computation – Aspects of Undefinedness. PhD thesis, University of Twente, Dept INF, Enschede, The Netherlands (1994)

    Google Scholar 

  10. Muzalewski, M.: An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels (1993), http://www.cs.kun.nl/~freek/mizar/mizarmanual.ps.gz

  11. Nederpelt, R.P., Geuvers, J.H., de Vrijer, R.C.: Selected Papers on Automath. Studies in Logic and the Foundations of Mathematics, vol. 133. Elsevier Science, Amsterdam (1994)

    MATH  Google Scholar 

  12. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  13. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 748–752. Springer, Heidelberg (1992)

    Google Scholar 

  14. Scott, D.S.: Identity and existence in intuitionistic logic. In: Fourman, M.P., Mulvey, C.J., Scott, D.S. (eds.) Applications of Sheaves, Berlin. Lecture Notes in Mathematics, vol. 753, pp. 660–696. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

  15. Shankar, N., Owre, S.: Principles and Pragmatics of Subtyping in PVS. In: Bert, D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 37–52. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. The Coq Development Team. The Coq Proof Assistant Reference Manual (2002), ftp://ftp.inria.fr/INRIA/coq/current/doc/Reference-Manual-all.ps.gz

  17. Troelstra, A., van Dalen, D.: Constructivism in Mathematics, an Introduction, Vols. 1-2. Studies in Logic and The Foundations of Mathematics, vol. 121 and 123. North-Holland, Amsterdam (1988)

    Google Scholar 

  18. Wos, L.: The Automation of Reasoning: An Experimenter’s Notebook with Otter Tutorial. Academic Press, New York (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiedijk, F., Zwanenburg, J. (2003). First Order Logic with Domain Conditions. In: Basin, D., Wolff, B. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2003. Lecture Notes in Computer Science, vol 2758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10930755_15

Download citation

  • DOI: https://doi.org/10.1007/10930755_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40664-8

  • Online ISBN: 978-3-540-45130-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics