Nothing Special   »   [go: up one dir, main page]

Skip to main content

Co-operative Improvement for a Combinatorial Optimization Algorithm

  • Conference paper
Artificial Evolution (AE 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1829))

Included in the following conference series:

Abstract

These last years a new model of co-operative algorithm appeared, the model of ants colonies. This paper is dedicated to the integration of an ants colony’s based co-operation method, in another algorithm, here research tabu, opposite the rough use of the computing power placed at the disposal on the current networks. The algorithms that we present are applied to the resolution of quadratic assignment problems (QAP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bachelet, V., Preux, P., Talbi, E.G.: Hybrid parallel heuristics: Application to the quadratic assignment problem. In: Parallel Optimization Colloquium, POC 1996, Versailles, France (March 1996)

    Google Scholar 

  2. Battiti, R., Tecchiolli, G.: The reactive tabu search. ORSA J. on Computing 6, 126–140 (1994)

    MATH  Google Scholar 

  3. Bilchev, G., Parmee, I.: The ant colony metaphor for searching continuous design spaces. In: Fogarty, T.C. (ed.) AISB-WS 1995. LNCS, vol. 993, pp. 24–39. Springer, Heidelberg (1995)

    Google Scholar 

  4. Bullnheimer, B., Hartl, R.F., Strauss, C.: A new rank based version of the ant system: A computational study. Working paper, University of Vienna, Austria (1997)

    Google Scholar 

  5. Burkard, R.E., Karisch, S.E., Rendl, F.: Qaplib - a quadratic assignment problem library. Journal of Global Optimization-10, 391–403 (1997)

    Google Scholar 

  6. Di Caro, G., Dorigo, M.: Antnet: A mobile agents approach to adaptive routing. Technical Report IRIDIA/97-12, IRIDIA, Universit Libre de Bruxelles, Belgium (1997)

    Google Scholar 

  7. Connolly, D.T.: An improved annealing scheme for the qap. Eur. J. Op. Res. 46, 93–100 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Costa, D., Hertz, A.: Ants can colour graphs. Journal of the Operational Research Society (48), 295–305 (1997)

    Google Scholar 

  9. Cung, V.-D., Mautor, T., Michelon, P., Tavares, A.: A scatter search based approach for the quadratic assignment problem. In: Proceedings of the IEEE Internatinnal Conference on Evolutionary Computation and Evolutionary Programming, ICEC 1997, Indianapolis, USA, pp. 165–170 (1997)

    Google Scholar 

  10. Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di Milano, Italy (1992)

    Google Scholar 

  11. Dorigo, M., Gambardella, L.M.: A study of some properties of ant-q. In: Proceedings of PPSN IV-Fourth -International Conference on Parallel Problem Solving From Nature, Berlin, Germany, September 22-27, pp. 656–665 (1996)

    Google Scholar 

  12. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics 1- Part B(26), 29–41 (1996)

    Google Scholar 

  13. Fleurent, C., Ferland, J.: Genetic hybrids for the quadratic assignment problem. DIMACS Serie in Mathematics and Theoretical Computer Science 16 (1994)

    Google Scholar 

  14. Gambardella, L.M., Dorigo, M.: Ant-q: A reinforcement learning approach to the traveling salesman problem. In: Prieditis, A., Russell, S. (eds.) Proceedings of ML-95 - Twelfth International Conference on Machine Learning, Tahoe City, pp. 252–260. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  15. Gambardella, L.M., Taillard, E., Dorigo, M.: Ant colonies for the qap. Accepted for publication in the Journal of the Operational Research Society (1998)

    Google Scholar 

  16. Glove, F.: Tabu search. Journal of Computing Part I (1(3)), 190–206 (1989)

    Google Scholar 

  17. Hafidi, Z., Talbi, E.-G., Geib, J.-M.: Mars: Un ordonnanceur adaptatif d’applications parallièles dans un environnement multi-utilisateurs. In: RenPar’8- 8me Rencontres Francophones du Paralllisme, Bordeaux, France, Mai 1996, pp. 37–40 (1996)

    Google Scholar 

  18. Koopmans, T.C., Beckmann, M.J.: Assignment problems and localisation of activities. Economica 25, 53–76 (1957)

    MATH  MathSciNet  Google Scholar 

  19. P Merz and B. Freileben. A genetics local search to the quadratic assignment problem. In Internationnal Conference on Genetic Algorithms, ICGA’97, pages 465{472, New Lancing, Michigan, USA, 1997.

    Google Scholar 

  20. Sahni, S., Gonzales, T.: P-complete approximation problems. Journal of ACM- 23, 556–565 (1976)

    Google Scholar 

  21. Sahni, S., Gonzales, T.: P-complete approximation problems. Journal of ACM- 23, 556–565 (1976)

    Google Scholar 

  22. Schoonderwoerd, R., Holland, O., Bruten, J., Rothbrantz, L.: Ant-based load balancing in telecommunications networks. Adaptive Behaviour 5(2), 169–207 (1997)

    Article  Google Scholar 

  23. Skorin-Kapov, J.: Tabu search applied to the quadratic assignment problem. ORSA Journal on Computing 2(1), 33–45 (1990)

    MATH  Google Scholar 

  24. Sondergeld, L., Voβ, S.: Meta-Heuristics: Theory and applications, pp. 489–502. Kluwer Academic Publishers, Boston (1996)

    Google Scholar 

  25. Sttzle, T., Hoos, H.: The max-min ant system and local search for the traveling salesman problem. In: IEEE Press (ed.) Proceedings of ICEC1997-IEEE 4th International Conference on Evolutionary Computation, pp. 308–313 (1997)

    Google Scholar 

  26. Stützle, T.: Max-min ant system for quadratic. Technical Report AIDA-97-04, AIDA, Darmstadt University of Technology, Computer Science Department (1997)

    Google Scholar 

  27. Taillard, E.D.: Robust taboo search for the quadratique assignment problem. Parallel Computing 17, 443–455 (1991)

    Article  MathSciNet  Google Scholar 

  28. Taillard, E.D., Gambardella, L.: Adaptive memories for the quadratic assignement problems. Technical Report IDSIA-87-97, IDSIA, Lugano, Switzerland (1997)

    Google Scholar 

  29. Talbi, E.-G., Hafidi, Z., Geib, J.-M.: Parallel adaptive tabu search for large optimization problems. In: MIC 1997-2nd Metaheuristics International Conference, Sophia Antipolis, France (Juillet 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roux, O., Fonlupt, C., Robilliard, D. (2000). Co-operative Improvement for a Combinatorial Optimization Algorithm. In: Fonlupt, C., Hao, JK., Lutton, E., Schoenauer, M., Ronald, E. (eds) Artificial Evolution. AE 1999. Lecture Notes in Computer Science, vol 1829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10721187_17

Download citation

  • DOI: https://doi.org/10.1007/10721187_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67846-5

  • Online ISBN: 978-3-540-44908-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics