Nothing Special   »   [go: up one dir, main page]

Skip to main content

Studies on Dynamics in the Classical Iterated Prisoner’s Dilemma with Few Strategies

Is There Any Chaos in the Pure Dilemma?

  • Conference paper
Artificial Evolution (AE 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1829))

Included in the following conference series:

  • 393 Accesses

Abstract

In this paper we study Classical Iterated Prisoner’s Dilemma (CIPD) dynamics of pure strategies in a discrete and determinist simulation context. We show that, in some very rare cases, they are not quiet and ordered. We propose a classification of ecological evolutions into categories which represent complex dynamics, such as oscillatory movements. We also show that those simulations are very sensitive to initial conditions. These experimentations could call into question classical conclusions about interest of cooperation between entities playing CIPD. They may be used to explain why it is not true that cooperation is always the convergent phenomenon observed in life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)

    Google Scholar 

  2. Beaufils, B., Delahaye, J.P., Mathieu, P.: Our Meeting with Gradual, A Good Strategy for the Iterated Prisoner’s Dilemma. In: Langton, C.G., Shimohara, K. (eds.) Proceedings of the Fifth International Workshop on the Synthesis and Simulation of Living Systems, Cambridge, MA, USA, pp. 202–209. The MIT Press/Bradford Books (1996); Artificial Life 5, Nara, Japan, May 16-18 (1996)

    Google Scholar 

  3. Beaufils, B., Delahaye, J.-P., Mathieu, P.: Complete classes of strategies for the classical iterated prisoner’s dilemma. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 33–41. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Delahaye, J.P., Mathieu, P.: Expriences sur le dilemme itr des prisonniers. Publication Interne IT-233, Laboratoire d’Informatique Fondamentale de Lille, Lille, France (1992)

    Google Scholar 

  5. Delahaye, J.P., Mathieu, P.: Complex Strategies in the Iterated Prisoner’s Dilemma. In: Albert, A. (ed.) Chaos and Society. Frontiers in Artificial Intelligence and Applications, vol. 29, pp. 283–292 (1995); Universit du Qubec Hull, Canada, IOS Press/Presses de l’Universit du Qubec. Chaos & Society 1994, Trois Rivires, Canada, June 1-2 (1994)

    Google Scholar 

  6. Flood, M.M.: Some experimental games. Research memorandum RM-789-1- PR, RAND Corporation, Santa-Monica, CA, USA (June 1952)

    Google Scholar 

  7. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  8. Lindgren, K.: Evolutionary Phenomena in Simple Dynamics. In: Langton, C.G., Taylor, C., Doyne Farmer, J., Rasmussen, S. (eds.) Artificial Life II: Proceedings of the Second Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems. Santa Fe Institute Studies in the Sciences of Complexity, vol. 10, pp. 295–312. Addisson- Wesley Publishing Company, Reading (1992); Artificial Life 2, Santa Fe, USA (February 1990)

    Google Scholar 

  9. Nachbar, J.H.: Evolution in the finitely repeated prisoner’s dilemma. Journal of Economic Behavior and Organization 19, 307–326 (1992)

    Article  Google Scholar 

  10. Nowak, M., Sigmund, K.: Oscillations in the Evolution of Reciprocity. Journal of Theoretical Biology 137, 21–26 (1989)

    Article  MathSciNet  Google Scholar 

  11. Poundstone, W.: Prisoner’s Dilemma: John von Neumann, Game Theory, and the Puzzle of the Bomb. Oxford University Press, Oxford (1993)

    Google Scholar 

  12. Maynard Smith, J.: The Games the Lizards Play. Nature 380, 198–199 (1996)

    Article  Google Scholar 

  13. von Neumann, J., Morgenstern, O.: Theory of Games and Economics Behavior. Princeton University Press, Princeton (1944)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mathieu, P., Beaufils, B., Delahaye, JP. (2000). Studies on Dynamics in the Classical Iterated Prisoner’s Dilemma with Few Strategies. In: Fonlupt, C., Hao, JK., Lutton, E., Schoenauer, M., Ronald, E. (eds) Artificial Evolution. AE 1999. Lecture Notes in Computer Science, vol 1829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10721187_13

Download citation

  • DOI: https://doi.org/10.1007/10721187_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67846-5

  • Online ISBN: 978-3-540-44908-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics