Nothing Special   »   [go: up one dir, main page]

Skip to main content

System Description: aRa – An Automatic Theorem Prover for Relation Algebras

  • Conference paper
Automated Deduction - CADE-17 (CADE 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1831))

Included in the following conference series:

Abstract

aRa is an automatic theorem prover for various kinds of relation algebras. It is based on Gordeev’s Reduction Predicate Calculi for n-variable logic (RPC n ) which allow first-order finite variable proofs. Employing results from Tarski/Givant and Maddux we can prove validity in the theories of simple semi-associative relation algebras, relation algebras and representable relation algebras using the calculi RPC3 , RPC4 and RPC ω . aRa, our implementation in Haskell, offers different reduction strategies for RPC n , and a set of simplifications preserving n-variable provability.

This work was partially supported by DFG under grant Ku 966/4-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chin, L.H., Tarski, A.: Distributive and modular laws in the arithmetic of relation algebras, vol. 1(9), pp. 341–384. University of California Publications in Mathematics, New Series, Berkeley, Los Angeles,santa barbara (1951)

    Google Scholar 

  2. J. Dawson and R. Gor_e. A mechanized proof system for relation algebra using display logic. In JELIA’98, LNAI 1489, pages 264{278. Springer, 1998.

    Chapter  Google Scholar 

  3. Gordeev, L.: Cut free formalization of logic with finitely many variables, part I. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 136–150. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Gordeev, L.: Variable compactness in 1-order logic. Logic Journal of the IGPL 7(3), 327–357 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hattensperger, C., Berghammer, R., Schmidt, G.: RALF - a relationalgebraic formula manipulation system and proof checker. In: AMAST 1995, Workshops in Computing, pp. 405–406. Springer, Heidelberg (1994)

    Google Scholar 

  6. Maddux, R.: A sequent calculus for relation algebras. Annals of Pure and Applied Logic 25, 73–101 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Tarski, A., Givant, S.: A Formalization of Set Theory without Variables. Optimization Techniques 1975, vol. 4. American Mathematical Society, Providence (1987)

    Google Scholar 

  8. von Oheimb, D., Gritzner, T.: RALL: Machine-supported proofs for relation algebra. In: McCune, W. (ed.) CADE 1997. LNCS(LNAI), vol. 1249, pp. 380–394. Springer, Heidelberg (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sinz, C. (2000). System Description: aRa – An Automatic Theorem Prover for Relation Algebras. In: McAllester, D. (eds) Automated Deduction - CADE-17. CADE 2000. Lecture Notes in Computer Science(), vol 1831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10721959_13

Download citation

  • DOI: https://doi.org/10.1007/10721959_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67664-5

  • Online ISBN: 978-3-540-45101-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics