Nothing Special   »   [go: up one dir, main page]

Skip to main content

Finding Skew Partitions Efficiently

  • Conference paper
  • First Online:
LATIN 2000: Theoretical Informatics (LATIN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1776))

Included in the following conference series:

  • 1095 Accesses

Abstract

A skew partition as defined by Chvátal is a partition of the vertex set of a graph into four nonempty parts A, B, C, D such that there are all possible edges between A and B, and no edges between C and D. We present a polynomial-time algorithm for testing whether a graph admits a skew partition. Our algorithm solves the more general list skew partition problem, where the input contains, for each vertex, a list containing some of the labels A, B, C, D of the four parts. Our polynomial-time algorithm settles the complexity of the original partition problem proposed by Chvátal, and answers a recent question of Feder, Hell, Klein and Motwani.

Research partially supported by CNPq, MCT/FINEP PRONEX Project 107/97, CAPES(Brazil)/COFECUB(France) Project 213/97, FAPERJ, and by FAPESP Proc. 96/04505-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12, 125–134 (1992)

    Article  MathSciNet  Google Scholar 

  2. Berge, C.: Les problèmes de coloration en théorie des graphes. Publ. Inst. Stat. Univ. Paris 9, 123–160 (1960)

    MATH  Google Scholar 

  3. Chvátal, V.: Recognizing decomposable graphs. J. Graph Theory 8, 51–53 (1984)

    Article  MathSciNet  Google Scholar 

  4. Chvátal, V.: Star-Cutsets and perfect graphs. J. Combin. Theory Ser. B 39, 189–199 (1985)

    Article  MathSciNet  Google Scholar 

  5. Cornuéjols, G., Reed, B.: Complete multi-partite cutsets in minimal imperfect graphs. J. Combin. Theory Ser. B 59, 191–198 (1993)

    Article  MathSciNet  Google Scholar 

  6. Everett, H., Klein, S., Reed, B.: An optimal algorithm for finding clique-cross partitions. Congr. Numer. 135, 171–177 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Feder, T., Hell, P.: List homomorphisms to reflexive graphs. J. Combin. Theory Ser. B 72, 236–250 (1998)

    Article  MathSciNet  Google Scholar 

  8. Feder, T., Hell, P., Huang, J.: List homomorphisms to bipartite graphs (manuscript)

    Google Scholar 

  9. Feder, T., Hell, P., Huang, J.: List homomorphisms to general graphs (manuscript)

    Google Scholar 

  10. Feder, T., Hell, P., Klein, S., Motwani, R.: Complexity of graph partition problems. In: Proceedings of the thirty-first ACM Symposium on Theory of Computing, STOC 1999, pp. 464–472 (1999)

    Google Scholar 

  11. de Figueiredo, C.M.H., Klein, S., Kohayakawa, Y., Reed, B.: Finding Skew Partitions Efficiently. Technical Report ES-503/99, COPPE/UFRJ, Brazil, Available at ftp://ftp.cos.ufrj.br/pub/tech_reps/es50399.ps.gz

  12. Fleischner, H., Stiebitz, M.: A solution of a coloring problem of P. Erdös. Discrete Math. 101, 39–48 (1992)

    Article  MathSciNet  Google Scholar 

  13. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Combin. Theory Ser. B 48, 92–110 (1990)

    Article  MathSciNet  Google Scholar 

  14. Hoàng, C.T.: Perfect Graphs. Ph.D. Thesis, School of Computer Science, McGill University, Montreal (1985)

    Google Scholar 

  15. MacGillivray, G., Yu, M.L.: Generalized partitions of graphs. Discrete Appl. Math. 91, 143–153 (1999)

    Article  MathSciNet  Google Scholar 

  16. Klein, S., de Figueiredo, C.M.H.: The NP-completeness of multi-partite cutest testing. Congr. Numer. 119, 216–222 (1996)

    Google Scholar 

  17. Vikas, N.: Computational complexity of graph compaction. In: Proceedings of the tenth ACM-SIAM Symposium on Discrete Algorithms, pp. 977–978 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Figueiredo, C.M.H., Klein, S., Kohayakawa, Y., Reed, B.A. (2000). Finding Skew Partitions Efficiently. In: Gonnet, G.H., Viola, A. (eds) LATIN 2000: Theoretical Informatics. LATIN 2000. Lecture Notes in Computer Science, vol 1776. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719839_18

Download citation

  • DOI: https://doi.org/10.1007/10719839_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67306-4

  • Online ISBN: 978-3-540-46415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics