Nothing Special   »   [go: up one dir, main page]

Skip to main content

Algorithmic Aspects of Regularity

  • Conference paper
  • First Online:
LATIN 2000: Theoretical Informatics (LATIN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1776))

Included in the following conference series:

Abstract

Szemerédi’s celebrated regularity lemma proved to be a fundamental result in graph theory. Roughly speaking, his lemma states that any graph may be approximated by a union of a bounded number of bipartite graphs, each of which is ‘pseudorandom’. As later proved by Alon, Duke, Lefmann, Rödl, and Yuster, there is a fast deterministic algorithm for finding such an approximation, and therefore many of the existential results based on the regularity lemma could be turned into constructive results. In this survey, we discuss some recent developments concerning the algorithmic aspects of the regularity lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Duke, R.A., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic aspects of the regularity lemma (extended abstract). In: 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania, pp. 473–481. IEEE Comput. Soc. Press, Los Alamitos (1992)

    Chapter  MATH  Google Scholar 

  2. Alon, N., Duke, R.A., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic aspects of the regularity lemma. Journal of Algorithms 16(1), 80–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs, p. 22 (1999) (submitted)

    Google Scholar 

  4. Alon, N., Fischer, E., Krivelevich, M., Szegedy, M.: Efficient testing of large graphs (extended abstract). In: 40th Annual Symposium on Foundations of Computer Science, New York City, NY, pp. 656–666. IEEE Comput. Soc. Press, Los Alamitos (1999)

    Google Scholar 

  5. Alon, N., Fischer, E.: Refining the graph density condition for the existence of almost K-factors. Ars Combinatoria 52, 296–308 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Alon, N., Yuster, R.: Almost H-factors in dense graphs. Graphs and Combinatorics 8(2), 95–102 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alon, N., Yuster, R.: H-factors in dense graphs. Journal of Combinatorial Theory, Series B 66(2), 269–282 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, F.R.K.: Regularity lemmas for hypergraphs and quasi-randomness. Random Structures and Algorithms 2(1), 241–252 (1991)

    MathSciNet  MATH  Google Scholar 

  9. Chung, F.R.K., Graham, R.L., Wilson, R.M.: Quasi-random graphs. Combinatorica 9(4), 345–362 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9(3), 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Czygrinow, A.: Partitioning problems in dense hypergraphs (1999) (submitted)

    Google Scholar 

  12. Czygrinow, A., Poljak, S., Rödl, V.: Constructive quasi-Ramsey numbers and tournament ranking. SIAM Journal on Discrete Mathematics 12(1), 48–63 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Czygrinow, A., Rödl, V.: An algorithmic regularity lemma for hypergraphs (1999) (submitted)

    Google Scholar 

  14. Duke, R.A., Lefmann, H., Rödl, V.: A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM Journal on Computing 24(3), 598–620 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Duke, R.A., Rödl, V.: On graphs with small subgraphs of large chromatic number. Graphs and Combinatorics 1(1), 91–96 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erdős, P., Spencer, J.: Probabilistic methods in combinatorics, p. 106. Akademiai Kiado, Budapest (1974)

    MATH  Google Scholar 

  17. Fischer, E.: Cycle factors in dense graphs. Discrete Mathematics 197/198, 309–323 (1999); 16th British Combinatorial Conference (London, 1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frankl, P., Rödl, V.: Extremal problems on set systems. Random Structures and Algorithms (to appear)

    Google Scholar 

  19. Frankl, P., Rödl, V.: The uniformity lemma for hypergraphs. Graphs and Combinatorics 8(4), 309–312 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frankl, P., Rödl, V., Wilson, R.M.: The number of submatrices of a given type in a Hadamard matrix and related results. Journal of Combinatorial Theory, Series B 44(3), 317–328 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frieze, A., Kannan, R.: The regularity lemma and approximation schemes for dense problems. In: 37th Annual Symposium on Foundations of Computer Science, Burlington, VT, pp. 12–20. IEEE Comput. Soc. Press, Los Alamitos (1996)

    Google Scholar 

  22. Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Combinatorica 19(2), 175–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frieze, A., Kannan, R.: A simple algorithm for constructing Szemerédi’s regularity partition. Electronic Journal of Combinatorics 6(1), 7 (1999) (electronic)

    MATH  Google Scholar 

  24. Goldreich, O.: Combinatorial property testing (a survey). Randomization methods in algorithm design, Princeton, NJ (1997); Amer. Math. Soc., Providence, RI, pp. 45–59 (1999)

    Google Scholar 

  25. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. In: 37th Annual Symposium on Foundations of Computer Science, Burlington, VT, pp. 339–348. IEEE Comput. Soc. Press, Los Alamitos (1996)

    Google Scholar 

  26. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the Association for Computing Machinery 45(4), 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. In: 29th ACM Symposium on Theory of Computing, El Paso, Texas, pp. 406–419 (1997)

    Google Scholar 

  28. Goldreich, O., Ron, D.: A sublinear bipartiteness tester for bounded degree graphs. Combinatorica 19(3), 335–373 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Golub, G.H., van Loan, C.F.: Matrix computations. Johns Hopkins University Press, London (1989)

    MATH  Google Scholar 

  30. Gowers, W.T.: Lower bounds of tower type for Szemerédi’s uniformity lemma. Geometric and Functional Analysis 7(2), 322–337 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Haxell, P.E., Kohayakawa, Y., Luczak, T.: The induced size-Ramsey number of cycles. Combinatorics, Probability, and Computing 4(3), 217–239 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Haxell, P.E., Rödl, V.: Integer and fractional packings in dense graphs (1999) (submitted)

    Google Scholar 

  33. Kohayakawa, Y.: Szemerédi’s regularity lemma for sparse graphs. In: Cucker, F., Shub, M. (eds.) Foundations of Computational Mathematics, pp. 216–230. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  34. Kohayakawa, Y., Rödl, V., Thoma, L.: An optimal deterministic algorithm for Szemerédi’s regularity lemma (2000) (submitted)

    Google Scholar 

  35. Komlós, J., Simonovits, M.: Szemerédi’s regularity lemma and its applications in graph theory, Combinatorics—Paul Erdős is eighty, Keszthely, vol. 2 (1993); Miklós, D., Sós, V.T., Szőnyi, T. (eds.) Bolyai Society Mathematical Studies, vol. 2, pp. 295–352. János Bolyai Mathematical Society, Budapest (1996)

    Google Scholar 

  36. Komlós, J.: The blow-up lemma, Combinatorics. Probability and Computing 8(1-2), 161–176 (1999); Recent trends in combinatorics, Mátraháza (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Komlós, J., Sárközy, G.N., Szemerédi, E.: Blow-up lemma. Combinatorica 17(1), 109–123 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Komlós, J., Sárközy, G.N., Szemerédi, E.: An algorithmic version of the blow-up lemma. Random Structures and Algorithms 12(3), 297–312 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 261–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lubotzky, A.: Discrete groups, expanding graphs and invariant measures. Birkhäuser Verlag, Basel (1994); with an appendix by Jonathan D. Rogawski

    Book  MATH  Google Scholar 

  41. Margulis, G.A.: Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii 24(1), 51–60 (1988)

    MathSciNet  Google Scholar 

  42. Prömel, H.J., Steger, A.: Excluding induced subgraphs III. A general asymptotic. Random Structures and Algorithms 3(1), 19–31 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rödl, V., Ruciński, A., Wagner, M.: An algorithmic embedding of graphs via perfect matchings. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 25–34. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  44. Rödl, V., Ruciński, A.: Perfect matchings in ε-regular graphs and the blow-up lemma. Combinatorica 19(3), 437–452 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applications to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sarnak, P.: Some applications of modular forms. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  47. Szemerédi, E.: On sets of integers containing no k elements in arithmetic progression. Acta Arithmetica 27, 199–245 (1975); collection of articles in memory of Juriĭ Vladimirovič Linnik

    Article  MathSciNet  MATH  Google Scholar 

  48. Szemerédi, E.: Regular partitions of graphs, Problèmes Combinatoires et Théorie des Graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay) (1976) (Paris), Colloques Internationaux CNRS, 260, pp. 399–401 (1978)

    Google Scholar 

  49. Taraz, A.R.: Szemerédis Regularitätslemma, Diplomarbeit, Universität Bonn, p. 83 (April 1995)

    Google Scholar 

  50. Thomason, A.G.: Pseudorandom graphs, Random graphs 1985 (Poznań) (1985); North-Holland Math. Stud., vol. 144, New York, pp. 307–331 North-Holland, Amsterdam (1987)

    Google Scholar 

  51. Thomason, A.G.: Random graphs, strongly regular graphs and pseudorandom graphs. In: Whitehead, C. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 123, pp. 173–195. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  52. Tiskin, A.: Bulk-synchronous parallel multiplication of Boolean matrices. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 494–506. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kohayakawa, Y., Rödl, V. (2000). Algorithmic Aspects of Regularity. In: Gonnet, G.H., Viola, A. (eds) LATIN 2000: Theoretical Informatics. LATIN 2000. Lecture Notes in Computer Science, vol 1776. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10719839_1

Download citation

  • DOI: https://doi.org/10.1007/10719839_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67306-4

  • Online ISBN: 978-3-540-46415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics