Nothing Special   »   [go: up one dir, main page]

Skip to main content

Attribute-Space Connected Filters

  • Conference paper
Mathematical Morphology: 40 Years On

Part of the book series: Computational Imaging and Vision ((CIVI,volume 30))

Abstract

In this paper connected operators from mathematical morphology are extended to a wider class of operators, which are based on connectivities in higher dimension spaces, similar to scale spaces which will be called attribute spaces. Though some properties of connected filters are lost, granulometries can be defined under certain conditions, and pattern spectra in most cases. The advantage of this approach is that regions can be split into constituent parts before filtering more naturally than by using partitioning connectivities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. U. Braga-Neto and J. Goutsias. A multiscale approach to connectivity. Comp. Vis. Image Understand., 89:70–107, 2003.

    Article  Google Scholar 

  2. E. J. Breen and R. Jones. Attribute openings, thinnings and granulometries. Comp. Vis. Image Understand., 64(3):377–389, 1996.

    Article  Google Scholar 

  3. H. J. A. M. Heijmans. Connected morphological operators for binary images. Comp. Vis. Image Understand., 73:99–120, 1999.

    Article  Google Scholar 

  4. T. Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. Comp. Vision Graph. Image Proc., 48:357–393, 1989.

    Article  Google Scholar 

  5. P. Maragos. Pattern spectrum and multiscale shape representation. IEEE Trans. Pattern Anal. Mach. Intell., 11:701–715, 1989.

    Article  Google Scholar 

  6. P. Maragos and R. D. Ziff. Threshold decomposition in morphological image analysis. IEEE Trans. Pattern Anal. Mach. Intell., 12(5), 1990.

    Google Scholar 

  7. P. Monasse and F. Guichard. Fast computation of a contrast invariant image representation. IEEE Trans. Image Proc., 9:860–872, 2000.

    Article  Google Scholar 

  8. P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Proc., 7:555–570, 1998.

    Article  Google Scholar 

  9. P. Salembier and J. Serra. Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Proc., 4:1153–1160, 1995.

    Article  Google Scholar 

  10. J. Serra. Connectivity on complete lattices. J. Math. Imag. Vis., 9(3):231–251, 1998.

    Article  Google Scholar 

  11. A. Sofou, C. Tzafestas, and P. Maragos. Segmentation of soilsection images using connected operators. In Int. Conf. Image Proc. 2001, pages 1087–1090, 2001.

    Google Scholar 

  12. C. S. Tzafestas and P. Maragos. Shape connectivity: Multiscale analysis and application to generalized granulometries. J. Math. Imag. Vis., 17:109–129, 2002.

    Article  Google Scholar 

  13. E. R. Urbach and M. H. F. Wilkinson. Shape-only granulometries and grey-scale shape filters. In Proc. Int. Symp. Math. Morphology (ISMM) 2002, pages 305–314, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Wilkinson, M.H. (2005). Attribute-Space Connected Filters. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics