Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interactive Television Personalization

From Guides to Programs

  • Chapter
Personalized Digital Television

Part of the book series: Human-Computer Interaction Series ((HCIS,volume 6))

Abstract

The personalized Electronic Program Guide (pEPG) has been touted as a possible solution to the information overload problem faced by Digital TV (DTV) users. It leverages artificial intelligence and user profiling techniques to learn about the viewing preferences of individual users in order to compile viewing guides that fit their individual preferences. In this chapter, we focus on the recommendation technology used by existing pEPG’s and argue that certain important shortcomings (related to profile sparsity and recommendation diversity) exist that impact the future success of pEPG’s. We describe how data mining approaches can be used to alleviate many of these problems and present results of a comprehensive evaluation of such approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Sullivan, D., Wilson, D. C. and Smyth, B.: 2002b, Using Collaborative Filtering Data in Case-Based Recommendation. In: S. M. Haller and G. Simmons (eds.): Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference. May 14–16, 2002, Pensacola Beach, Florida, USA, pp. 121–128.

    Google Scholar 

  2. O’Sullivan, D., Wilson, D. C. and Smyth, B.: 2002a, Improving Case-Based Recommendation: A Collaborative Filtering Approach. In: S. Craw and A. D. Preece (eds.): Advances in Case-Based Reasoning, 6th European Conference, ECCBR 2002 Aberdeen, Scotland, UK, September 4–7, 2002, Proceedings, Vol. 2416 of Lecture Notes in Computer Science, pp. 278–291.

    Google Scholar 

  3. O’Sullivan, D., Smyth, B., Wilson, D. C., McDonald, K. and Smeaton, A.: 2003, Improving the Quality of the Personalised Electronic Program Guide, In: L. Ardisonno, M. Maybury and Alfred Kobsa (eds.): UMUAI Special Issue on User Modeling and Personalization for Television. In Press.

    Google Scholar 

  4. Wilson, D. C., Smyth, B. and O’Sullivan, D.: 2003, Sparsity Reduction in Collaborative Recommendation: A Case-Based Approach, In: I. Russell and S. Haller (eds.): International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI), 17(5), pp. 863–884, World Scientific, 2003.

    Google Scholar 

  5. O’Sullivan, D., Smyth, B. and Wilson, D.: 2003b, Explicit vs Implicit Profiling — A Case-Study in Electronic Programme Guides, In: G. Gottlob and T. Walsh (eds.): Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, (IJCAI-03), Acapulco, Mexico, pp. 1351–1356, Morgan Kaufmann, 2003.

    Google Scholar 

  6. O’Sullivan, D., Smyth, B. and Wilson, D.: 2003a, Preserving Recommender Accuracy and Diversity in Sparse Datasets, In: S. Haller and I. Russell (eds.): International Journal of Artificial Intelligence Techniques (IJAIT). In Press.

    Google Scholar 

  7. Smeaton, A. F., Murphy, N., O’Connor, N. E., Marlow, S., Lee, H., McDonald, K., Browne, P. and Ye, J.: 2001, The Fischlar Digital Video System: A Digital Library of Broadcast TV Programmes, In: Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 312–313.

    Google Scholar 

  8. Smeaton, A. F., Lee, H., O’Connor, N., Marlow, S. and Murphy, N.: 2003, TV News Story Segmentation, Personalisation and Recommendation, In: Intelligent Multimedia Knowledge Management 2003 AAAI Spring Symposium, Technical Report SS-03-04, AAAI Press, 2003.

    Google Scholar 

  9. Smeaton, A. F., Murphy, N., O’Connor, N., Marlow, S., Lee, H., McDonald, K., Browne, P. and Ye, J.: 2001, The Fischlar Digital Video System: A Digital Library of Broadcast TV Programmes, In: Proceedings of JCDL 2001 — ACM+IEEE Joint Conference on Digital Libraries, Roanoke, VA, 24–28 June 2001.

    Google Scholar 

  10. Smeaton, A. F. and Over, P.: 2003, TRECVID: Benchmarking the Effectiveness of Information Retrieval Tasks on Digital Video, In: Proceeding of the International Conference on Image and Video Retrieval, Urbana, IL, USA, July 2003, Springer, LNCS 2728, pp. 19–27.

    Google Scholar 

  11. Ardissono, L. and Faihe, Y. (eds.): 2001, In: Proceedings of the 1st Workshop on Personalisation in Future TV, UM, 2001, Sonthofen, Germany.

    Google Scholar 

  12. Ardissono, L. and Buczak, A. (eds.): 2002, In: Proceedings of the 2nd Workshop on Personalisation in Future TV, AH 2002, Malaga, Spain.

    Google Scholar 

  13. Ardissono, L. and Maybury, M. (eds.): 2003, In: Proceedings of the 3rd Workshop on Personalisation in Future TV, UM 2003, Johnstown, PA, USA.

    Google Scholar 

  14. Buczak, A. L., Zimmerman, J. and Kurapati, K.: 2002, Personalization: Improving Ease-of-Use, Trust and Accuracy of a TV show Recommender, In: L. Ardissono and A. Buczak (eds.): Proceedings of the 2nd Workshop on Personalisation in Future TV, Malaga, Spain, pp. 9–18.

    Google Scholar 

  15. Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R. and Riedl, J.: 1997, GroupLens: Applying Collaborative Filtering to Usenet News, In: D. Crawford (ed.): Communications of the ACM, 40(3), pp. 77–87.

    Google Scholar 

  16. Smyth, B. and Cotter. P.: 2001, Personalised Electronic Programme Guides, Artificial Intelligence Magazine, 21(2), pp. 210–217.

    Google Scholar 

  17. Balabanovi, M. and Shoham, Y.: 1997, Fab: Content-based, Collaborative Recommendation, In: D. Crawford (ed.): Communications of the ACM, 40(3), pp. 66–72.

    Google Scholar 

  18. Wilson, D. C. and Leake, D. B.: 1998, Maintaining Case-Based Reasoners: Dimensions And Directions, Computational Intelligence, 17(2).

    Google Scholar 

  19. Hipp, J., Güntzer, U. and Nakhaeizadeh, G.: 2000, Mining Association Rules: Deriving a Superior Algorithm by Analyzing Today’s Approaches, In: D. A. Zighed, H. J. Komorowski and J. M. Zytkow (eds.): Proceedings of the 4th European Symposium on Principles of Data Mining and Knowledge Discovery, pp. 159–168.

    Google Scholar 

  20. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H. and Verkamo, A. I.: 1996, Fast Discovery of Association Rules. In: U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds.): Advances in Knowledge Discovery and Data Mining. AAAI Press, Chapter 12, pp. 307–328.

    Google Scholar 

  21. Sarwar, B., Karypis, G., Konstan, J. and Riedl, J.: 2001, Item-based Collaborative Filtering Recommendation Algorithms. In: V. Y. Shen and N. Saito and M. R. Lyu and M. E. Zurko (eds.): Proceedings of the Tenth International Conference on World Wide Web. pp. 285–295.

    Google Scholar 

  22. Hayes, C., Cunningham, P. and Smyth, B.: 2001, A Case-Based View of Automated Collaborative Filtering. In: D. W. Aha and I. Watson (eds.): Case-Based Reasoning Research and Development, 4th International Conference on Case-Based Reasoning, ICCBR 2001, Vancouver, BC, Canada, July 30–August 2, 2001, Vol. 2080 of Lecture Notes in Computer Science. pp. 234–248.

    Google Scholar 

  23. Billsus, D. and Pazzani, M. J.: 1998, Learning Collaborative Information Filters. In: J. W. Shavlik (ed.): Proceedings of the Fifteenth International Conference on Machine Learning (ICML 1998), Madison, Wisconson, USA, July 24–27, 1998. pp. 46–54.

    Google Scholar 

  24. Hara, Y., Tomomune, Y. and Shigemori, M.: 2003, Categorization of Japanese TV Viewers Based on Program Genres They Watch, In this volume.

    Google Scholar 

  25. Maybury, M., Greiff, W., Boykin, S., Ponte, J., McHenry, C. and Ferro, L.: 2003, Personalcasting: Tailored Broadcast News, In this volume.

    Google Scholar 

  26. Masthoff, J.: 2003, Group modeling: Selecting a Sequence of Television Items to Suit a Group of Viewers, In this volume.

    Google Scholar 

  27. Burke, R.: 2000, A Case-Based Reasoning Approach to Collaborative Filtering, In E. Blanzieri and L. Portinale (eds.): Proceedings of EWCBR-00, Trento, Italy, 1898, Springer, pp. 370–379.

    Google Scholar 

  28. Bradley, K. and Smyth, B.: 2001, Improving Recommendation Diversity, Proceedings of (AICS 2001), Limerick, Ireland, pp. 85–94.

    Google Scholar 

  29. McSherry, D.: 2001, Increasing Recommendation Diversity Without Loss of Similarity, Proceedings of the 6th UK CBR Workshop, December 2001, Cambridge, UK, pp. 23–31.

    Google Scholar 

  30. Ardissono, L., Gena, C. and Torasso, P.: 2003, User Modeling and Recommendation Techniques for Personalised Electronic Program Guides, In: L. Ardisonno, M. Maybury and A. Kobsa (eds.): In this volume.

    Google Scholar 

  31. Zimmerman, J., Kurapati, K., Buczak, A. L., Schaffer, D., Martino, J. and Gutti, S.: 2003, TV Personalisation System: Design of a TV Show Recommender Engine and Interface, In this volume.

    Google Scholar 

  32. Smyth, B. and Cotter, P.: 2003, The Evolution of the Personalized Electronic Programme Guide, In this volume.

    Google Scholar 

  33. Dimitrova, N., Zimmerman, J. and Janevski, A.: 2003, Content Augmentation of Personalized Entertainment Experience, In this volume.

    Google Scholar 

  34. Pittarello, F.: 2003, The Time-Pillars World: A 3D Paradigm for the New Enlarged TV Information Domain, In this volume.

    Google Scholar 

  35. Rambhia, A., Wen, G. and Cheung, S.: 2003, Content Morphing: A Novel System for Broadcast Delivery of Personalizable Content, In this volume.

    Google Scholar 

  36. van Barneveld, J. and van Setten, M.: 2003, Designing Usable Interfaces for TV Recommender Systems, In this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

O’Sullivan, D., Smyth, B., Wilson, D., Mc Donald, K., Smeaton, A.F. (2004). Interactive Television Personalization. In: Personalized Digital Television. Human-Computer Interaction Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2164-X_4

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2164-X_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2163-3

  • Online ISBN: 978-1-4020-2164-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics