Abstract
We consider the tracking problem for parabolic systems with boundary control. Assuming that the reference signal is bounded and measurable, we prove various regularity results as well representation formulas for the optimal control and the optimal trajectory.
The research of both the authors was supported in part by the Italian Ministero dell’Università e della Ricerca Scientifica e Tecnologica. It fits the program of GNAMPA.
Chapter PDF
Similar content being viewed by others
References
A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter. Representation and control of infinite-dimensional systems. Birkhäuser, Boston, 1992.
K-J. Engel and R. Nagel. One-parameter semigroups for linear evolution systems. Springer-Verlag, Berlin, 2000.
J. M. Grimble and M. A. Johnson. Optimal control and stochastic estimation: theory and applications. John Wiley & Sons, Chichester, 1988.
I. Lasiecka, L. Pandolfi, and R. Triggiani. A singular control approach to highly damped second-order abstract equations and applications. Applied Mathematics & Optimization, 36:67–107, 1997.
I. Lasiescka and R. Triggiani. Control theory for partial differential equations: continuous and approximation theories: Abstract parabolic systems. Cambridge University Press, Cambridge, 2000.
A. Lunardi. Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel, 1995.
A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springre-Verlag, Berlin, 1983.
E. D. Sontag. Mathematical Control Theory. Springer-Verlag, Berlin, 1990.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 International Federation for Information Processing
About this paper
Cite this paper
Pandolfi, L., Priola, E. (2005). Tracking Control of Parabolic Systems. In: Cagnol, J., Zolésio, JP. (eds) System Modeling and Optimization. CSMO 2003. IFIP International Federation for Information Processing, vol 166. Springer, Boston, MA. https://doi.org/10.1007/0-387-23467-5_8
Download citation
DOI: https://doi.org/10.1007/0-387-23467-5_8
Publisher Name: Springer, Boston, MA
Print ISBN: 978-1-4020-7760-9
Online ISBN: 978-0-387-23467-0
eBook Packages: Computer ScienceComputer Science (R0)