Abstract
With the advent of the Semantic Web, description logics have become one of the most prominent paradigms for knowledge representation and reasoning. Progress in research and applications, however, is constrained by the lack of well-structured knowledge bases consisting of a sophisticated schema and instance data adhering to this schema. It is paramount that suitable automated methods for their acquisition, maintenance, and evolution will be developed. In this paper, we provide a learning algorithm based on refinement operators for the description logic ALCQ including support for concrete roles. We develop the algorithm from thorough theoretical foundations by identifying possible abstract property combinations which refinement operators for description logics can have. Using these investigations as a basis, we derive a practically useful complete and proper refinement operator. The operator is then cast into a learning algorithm and evaluated using our implementation DL-Learner. The results of the evaluation show that our approach is superior to other learning approaches on description logics, and is competitive with established ILP systems.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Auer, S., Dietzold, S., & Riechert, T. (2006). OntoWiki—a tool for social, semantic collaboration. In Lecture notes in computer science : Vol. 4273. The semantic web—ISWC 2006, 5th international semantic web conference, ISWC 2006, Athens, GA, USA, November 5–9, 2006, Proceedings (pp. 736–749). Berlin: Springer.
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2008). DBpedia: A nucleus for a web of open data. In Lecture notes in computer science : Vol. 4825. Proceedings of the 6th international semantic web conference (ISWC) (pp. 722–735). Berlin: Springer.
Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.) (2007). The description logic handbook: theory, implementation, and applications. Cambridge: Cambridge University Press.
Badea, L. (2000). Perfect refinement operators can be flexible. In W. Horn (Ed.), Proceedings of the 14th European conference on artificial intelligence (pp. 266–270). Amsterdam: IOS Press.
Badea, L., & Nienhuys-Cheng, S.-H. (2000). A refinement operator for description logics. In J. Cussens & A. Frisch (Eds.), Lecture notes in artificial intelligence : Vol. 1866. Proceedings of the 10th international conference on inductive logic programming (pp. 40–59). Berlin: Springer.
Badea, L., & Stanciu, M. (1999). Refinement operators can be (weakly) perfect. In S. Džeroski & P. Flach (Eds.), Lecture notes in artificial intelligence : Vol. 1634. Proceedings of the 9th international workshop on inductive logic programming (pp. 21–32). Berlin: Springer.
Belleau, F., Tourigny, N., Good, B., & Morissette, J. (2008). Bio2RDF: A semantic web atlas of post genomic knowledge about human and mouse. In A. Bairoch, S. C. Boulakia, & C. Froidevaux (Eds.), Lecture notes in computer science : Vol. 5109. DILS (pp. 153–160). Berlin: Springer.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1990). Occam’s razor. In J. W. Shavlik & T. G. Dietterich (Eds.), Readings in machine learning (pp. 201–204). San Mateo: Morgan Kaufmann.
Brachman, R. J. (1978). A structural paradigm for representing knowledge. Technical Report BBN Report 3605, Bolt, Beraneck and Newman, Inc., Cambridge, MA.
Bratko, I. (1999). Refining complete hypotheses in ILP. In S. Džeroski & P. Flach (Eds.), Lecture notes in artificial intelligence : Vol. 1634. Proceedings of the 9th international workshop on inductive logic programming (pp. 44–55). Berlin: Springer.
Buitelaar, P., Cimiano, P., & Magnini, B. (Eds.) (2007). Ontology learning from text: Methods, evaluation and applications. Frontiers in artificial intelligence (Vol. 123). Amsterdam: IOS Press.
Cohen, W. W., & Hirsh, H. (1994). Learning the CLASSIC description logic: Theoretical and experimental results. In J. Doyle, E. Sandewall, & P. Torasso (Eds.), Proceedings of the 4th international conference on principles of knowledge representation and reasoning (pp. 121–133). San Mateo: Morgan Kaufmann.
Cohen, W. W., Borgida, A., & Hirsh, H. (1993). Computing least common subsumers in description logics. In Proceedings of the tenth national conference on artificial intelligence (pp. 754–760). Menlo Park: AAAI Press.
Davies, J., Studer, R., & Warren, P. (Eds.) (2006). Semantic web technologies—trends and research in ontology-based systems. New York: Wiley.
de Bruijn, J., Lara, R., Polleres, A., & Fensel, D. (2005). OWL DL vs OWL flight: conceptual modeling and reasoning for the semantic web. In A. Ellis & T. Hagino (Eds.), Proceedings of the 14th international conference on World Wide Web, WWW 2005, Chiba, Japan, May 10–14, 2005 (pp. 623–632). New York: ACM.
Dietterich, T., Domingos, P., Getoor, L., Muggleton, S., & Tadepalli, P. (2008). Structured machine learning: the next ten years. Machine Learning, 73(1), 3–23.
Domingos, P. (1998). Occam’s two razors: The sharp and the blunt. In Proceedings of the fourth international conference on knowledge discovery and data mining (pp. 37–43).
Dutra, I., Page, D., Costa, V. S., & Shavlik, J. (2003). An empirical evaluation of bagging in inductive logic programming. In S. Matwin & C. Sammut (Eds.), Lecture notes in artificial intelligence : Vol. 2583. Proceedings of the 12th international conference on inductive logic programming (pp. 48–65). Berlin: Springer.
Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., & Semeraro, G. (2004). Knowledge-intensive induction of terminologies from metadata. In The semantic web—ISWC 2004: Third international semantic web conference, Hiroshima, Japan, November 7–11, 2004. Proceedings (pp. 441–455). Berlin: Springer.
Fanizzi, N., Ferilli, S., Mauro, N. D., & Basile, T. M. A. (2003). Spaces of theories with ideal refinement operators. In G. Gottlob & T. Walsh (Eds.), IJCAI-03, Proceedings of the eighteenth international joint conference on artificial intelligence, Acapulco, Mexico, August 9–15, 2003 (pp. 527–532). San Mateo: Morgan Kaufmann.
Fanizzi, N., Ferilli, S., Iannone, L., Palmisano, I., & Semeraro, G. (2004). Downward refinement in the ALN description logic. In HIS (pp. 68–73). New York: IEEE Computer Society.
Hellmann, S., Lehmann, J., & Auer, S. (2009). Learning of OWL class descriptions on very large knowledge bases. International Journal on Semantic Web and Information Systems, Special Issue on Scalability and Performance of Semantic Web Systems, 5(2), 25–48.
Hitzler, P., Krötzsch, M., & Rudolph, S. (2009). Foundations of semantic web technologies. Boca Raton: CRC Press/Chapman & Hall.
Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From \(\mathcal{SHIQ}\) and RDF to OWL: The making of a web ontology language. Journal of Web Semantics, 1(1), 7–26.
Horrocks, I., Kutz, O., & Sattler, U. (2006). The even more irresistible SROIQ. In P. Doherty, J. Mylopoulos, & C. A. Welty (Eds.), Proceedings, tenth international conference on principles of knowledge representation and reasoning, Lake District of the United Kingdom, June 2–5, 2006 (pp. 57–67). Menlo Park: AAAI Press.
Iannone, L., & Palmisano, I. (2005). An algorithm based on counterfactuals for concept learning in the semantic web. In Proceedings of the 18th international conference on industrial and engineering applications of artificial intelligence and expert systems (pp. 370–379), Bari, Italy.
Iannone, L., Palmisano, I., & Fanizzi, N. (2007). An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence, 26(2), 139–159.
Jiang, N., & Colton, S. (2006). Boosting descriptive ILP for predictive learning in bioinformatics. In S. Muggleton, R. P. Otero, & A. Tamaddoni-Nezhad (Eds.), Lecture notes in computer science : Vol. 4455. Proceedings of the 15th international conference on inductive logic programming (pp. 275–289). Berlin: Springer.
Kietz, J.-U., & Morik, K. (1994). A polynomial approach to the constructive induction of structural knowledge. Machine Learning, 14, 193–217.
Krötzsch, M., Rudolph, S., & Hitzler, P. (2008a). Description logic rules. In M. Ghallab et al. (Eds.), Proceedings of the 18th European conf. on artificial intelligence (ECAI-08) (pp. 80–84). Amsterdam: IOS Press.
Krötzsch, M., Rudolph, S., & Hitzler, P. (2008b). ELP: tractable rules for OWL 2. In A. Sheth et al. (Eds.), Lecture notes in computer science : Vol. 5318. The semantic web—ISWC 2008, 7th international semantic web conference (pp. 649–664). Berlin: Springer.
Lehmann, J. (2007). Hybrid learning of ontology classes. In P. Perner (Ed.), Lecture notes in computer science : Vol. 4571. Machine learning and data mining in pattern recognition, 5th international conference, MLDM 2007, Leipzig, Germany, July 18–20, 2007, Proceedings (pp. 883–898). Berlin: Springer.
Lehmann, J., & Hitzler, P. (2007a). Foundations of refinement operators for description logics. In H. Blockeel, J. Ramon, J. W. Shavlik, & P. Tadepalli (Eds.), Lecture notes in computer science : Vol. 4894. Inductive logic programming, 17th international conference, ILP 2007, Corvallis, OR, USA, June 19–21, 2007, Revised selected papers (pp. 161–174). Berlin: Springer.
Lehmann, J., & Hitzler, P. (2007b). A refinement operator based learning algorithm for the alc description logic. In H. Blockeel, J. Ramon, J. W. Shavlik, & P. Tadepalli (Eds.), Lecture notes in computer science : Vol. 4894. Inductive logic programming, 17th international conference, ILP 2007, Corvallis, OR, USA, June 19–21, 2007, Revised selected papers (pp. 147–160). Berlin: Springer.
Lisi, F. A., & Malerba, D. (2003). Ideal refinement of descriptions in AL-log. In T. Horváth (Ed.), Lecture notes in computer science : Vol. 2835. Inductive logic programming: 13th international conference, ILP 2003, Szeged, Hungary, September 29–October 1, 2003, Proceedings (pp. 215–232). Berlin: Springer.
Michalski, R. S. (1980). Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2(4), 349–361.
Mitchell, T. (1997). Machine learning. New York: McGraw Hill.
Nienhuys-Cheng, S.-H., & de Wolf, R. (Eds.) (1997). Foundations of inductive logic programming. Lecture notes in computer science, (Vol. 1228). Berlin: Springer.
Nienhuys-Cheng, S.-H., Laer, W. V., Ramon, J., & Raedt, L. D. (1999). Generalizing refinement operators to learn prenex conjunctive normal forms. In S. Džeroski & P. Flach (Eds.), Lecture notes in artificial intelligence : Vol. 1634. Proceedings of the 9th international workshop on inductive logic programming (pp. 245–256). Berlin: Springer.
Nienhuys-Cheng, S. H., van der Laag, P. R. J., & van der Torre, L. W. N. (1993). Constructing refinement operators by decomposing logical implication. In P. Torasso (Ed.), LNAI : Vol. 728. Advances in artificial intelligence: Proceedings of the 3rd congress of the Italian association for artificial intelligence (AI*IA’93), Torino, Italy (pp. 178–189). Berlin: Springer.
Patel-Schneider, P. F., & Horrocks, I. (2007). A comparison of two modelling paradigms in the semantic web. Journal on Web Semantics, 5(4), 240–250.
Rector, A. L., & Brandt, S. (2008). Why do it the hard way? The case for an expressive description logic for SNOMED. Journal of the American Medical Informatics Association.
Richards, B. L., & Mooney, R. J. (1995). Refinement of first-order Horn-clause domain theories. Machine Learning, 19(2), 95–131.
Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., & Hart, G. (2008). A comparison of three controlled natural languages for OWL 1.1. In K. Clark & P. F. Patel-Schneider (Eds.), Proceedings of the fourth international workshop OWL: Experiences and directions, OWLED2008DC, Washington, DC, April 2008. Available from http://www.webont.org/owled/2008dc.
Shapiro, E. Y. (1991). Inductive inference of theories from facts. In J. L. Lassez & G. D. Plotkin (Eds.), Computational logic: Essays in honor of Alan Robinson (pp. 199–255). Cambridge: MIT Press.
Srinivasan, A., King, R. D., Muggleton, S., & Sternberg, M. J. E. (1997). Carcinogenesis predictions using ILP. In S. Džeroski & N. Lavrač (Eds.), Lecture notes in artificial intelligence : Vol. 1297. Proceedings of the 7th international workshop on inductive logic programming (pp. 273–287). Berlin: Springer.
Staab, S., & Studer, R. (Eds.) (2004). Handbook on ontologies. International handbooks on information systems. Heidelberg: Springer.
van der Laag, P. R. J., & Nienhuys-Cheng, S.-H. (1994). Existence and nonexistence of complete refinement operators. In F. Bergadano & L. D. Raedt (Eds.), Lecture notes in artificial intelligence : Vol. 784. Proceedings of the 7th European conference on machine learning (pp. 307–322). Berlin: Springer.
Völker, J., Hitzler, P., & Cimiano, P. (2007). Acquisition of OWL DL axioms from lexical resources. In E. Franconi, M. Kifer, & W. May (Eds.), Lecture notes in computer science : Vol. 4519. Proceedings of the 4th European semantic web conference (ESWC’07) (pp. 670–685). Berlin: Springer.
Šebelík, J., & Štěpánek, P. (1982). Horn clause programs for recursive functions. In K. Clark & S.-Å. Tärnlund (Eds.), Logic programming (pp. 324–340). New York: Academic Press.
Železný, F., Srinivasan, A., & Page, D. (2003). Lattice-search runtime distributions may be heavy-tailed. In S. Matwin & C. Sammut (Eds.), Lecture notes in artificial intelligence : Vol. 2583. Proceedings of the 12th international conference on inductive logic programming (pp. 333–345). Berlin: Springer.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editor: Hendrik Blockeel.
Rights and permissions
About this article
Cite this article
Lehmann, J., Hitzler, P. Concept learning in description logics using refinement operators. Mach Learn 78, 203–250 (2010). https://doi.org/10.1007/s10994-009-5146-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10994-009-5146-2