Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A Tabu search based routing algorithm for wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, a Tabu search based routing algorithm is proposed to efficiently determine an optimal path from a source to a destination in wireless sensor networks (WSNs). There have been several methods proposed for routing algorithms in wireless sensor networks. In this paper, the Tabu search method is exploited for routing in WSNs from a new point of view. In this algorithm (TSRA), a new move and neighborhood search method is designed to integrate energy consumption and hop counts into routing choice. The proposed algorithm is compared with some of the ant colony optimization based routing algorithms, such as traditional ant colony algorithm, ant colony optimization-based location-aware routing for wireless sensor networks, and energy and path aware ant colony algorithm for routing of wireless sensor networks, in term of routing cost, energy consumption and network lifetime. Simulation results, for various random generated networks, demonstrate that the TSRA, obtains more balanced transmission among the node, reduces the energy consumption and cost of the routing, and extends the network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Domínguez-Medina, C., & Cruz-Cortés, N. (2010). Routing algorithms for wireless sensor networks using ant colony optimization. In G. Sidorov, A. H. Aguirre, & C. A. Reyes García (Eds.), Advances in soft computing (pp. 337–348). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-16773-7_29.

    Chapter  Google Scholar 

  2. Jang, K. W. (2012). A tabu search algorithm for routing optimization in mobile ad-hoc networks. Telecommunication Systems, 51(2–3), 177–191.

    Article  Google Scholar 

  3. Enami, N., Moghadam, R. A., & Haghighat, A. (2010). A survey on application of neural networks in energy conservation of wireless sensor networks. In A. Özcan, N. Chaki, & D. Nagamalai (Eds.), Recent trends in wireless and mobile networks (pp. 283–294). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14171-3_24.

    Chapter  Google Scholar 

  4. Armaghan, M., & Haghighat, A. T. (2009). QoS multicast routing algorithms based on Tabu search with hybrid candidate list. In Y. Lee, T. Kim, W. Fang, & D. Ślęzak (Eds.), Future generation information technology (pp. 285–294). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-10509-8_32.

    Chapter  Google Scholar 

  5. Eftekhari, P., Shokrzadeh, H., & Haghighat, A. T. (2010). Cluster-base directional rumor routing protocol in wireless sensor network. In V. V. Das & R. Vijaykumar (Eds.), Information and communication technologies (pp. 394–399). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-15766-0_62.

    Google Scholar 

  6. Glover, F. (1989). Tanu search—Part I. ORSA Journal on Computing, 1(1), 190–206.

    Article  Google Scholar 

  7. Cheng, D., Xun, Y., Zhou, T., & Li, W. (2011). An energy aware ant colony algorithm for the routing of wireless sensor networks. In D. Cheng, Y. Xun, T. Zhou, & W. Li (Eds.), Intelligent computing and information science (pp. 395–401). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-18129-0_62.

    Chapter  Google Scholar 

  8. Orojloo, H., Moghadam, R. A., & Haghighat, A. T. (2012). Energy and path aware ant colony optimization based routing algorithm for wireless sensor networks. In P. Venkata Krishna, M. Rajasekhara Babu, & E. Ariwa (Eds.), Global trends in computing and communication systems (pp. 182–191). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-29219-4_22.

    Chapter  Google Scholar 

  9. Wang, X., Li, Q., Xiong, N., & Pan, Y. (2008). Ant colony optimization-based location-aware routing for wireless sensor networks. In Y. Li, D. T. Huynh, S. K. Das, & D.-Z. Du (Eds.), Wireless algorithms, systems, and applications (pp. 109–120). Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-88582-5_13.

    Chapter  Google Scholar 

  10. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6), 91–98.

    Article  Google Scholar 

  11. Esch, J. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2534–2537.

    Article  Google Scholar 

  12. Azharuddin, M., & Jana, P. K. (2015). A distributed algorithm for energy efficient and fault tolerant routing in wireless sensor networks. Wireless Networks, 21(1), 251–267.

    Article  Google Scholar 

  13. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  14. Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. V. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman Filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  15. Tamandani, Y. K., & Bokhari, M. U. (2015). SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wireless Networks, 21, 1–7. doi:10.1007/s11276-015-0997-x.

    Article  Google Scholar 

  16. Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks (TOSN), 11(3), 45.

    Article  Google Scholar 

  17. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating Congestion + Dilation in Networks via” Quality of Routing” Games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  18. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  19. Sengupta, S., Das, S., Nasir, M., Vasilakos, A. V., & Pedrycz, W. (2012). An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(6), 1093–1102.

    Article  Google Scholar 

  20. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012, March). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, 2012 proceedings IEEE (pp. 100–108). IEEE.

  21. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  22. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  23. Cheng, H., Xiong, N., Vasilakos, A. V., Yang, L. T., Chen, G., & Zhuang, X. (2012). Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks. Ad Hoc Networks, 10(5), 760–773.

    Article  Google Scholar 

  24. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  Google Scholar 

  25. Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D. Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for MAC protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  26. Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.

    Article  Google Scholar 

  27. Marwaha, S., Srinivasan, D., Tham, C. K., & Vasilakos, A. (2004). Evolutionary fuzzy multi-objective routing for wireless mobile ad hoc networks. In Evolutionary computation, 2004. CEC2004. Congress on (Vol. 2, pp. 1964–1971). IEEE.

  28. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers. doi:10.1109/TC.2015.2417543.

    MathSciNet  Google Scholar 

  29. Vasilakos, A., Saltouros, M. P., Atlassis, A. F., & Pedrycz, W. (2003). Optimizing QoS routing in hierarchical ATM networks using computational intelligence techniques. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 33(3), 297–312.

    Article  Google Scholar 

  30. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  31. Rahimi, M. R., Venkatasubramanian, N., Mehrotra, S., & Vasilakos, A. V. (2012, November). MAPCloud: mobile applications on an elastic and scalable 2-tier cloud architecture. In Proceedings of the 2012 IEEE/ACM fifth international conference on utility and cloud computing (pp. 83–90). IEEE Computer Society.

  32. Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors. Retrieved from http://www.hindawi.com/journals/js/2009/134165/abs/.

  33. Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In Sensor, mesh and ad hoc communications and networks (SECON), 2011 8th annual IEEE communications society conference on (pp. 46–54). IEEE.

  34. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. Communications Surveys & Tutorials, IEEE, 16(1), 92–109.

    Article  Google Scholar 

  35. Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. Communications Magazine, IEEE, 51(7), 107–113.

    Article  Google Scholar 

  36. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013, October). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In Mobile ad-hoc and sensor systems (MASS), 2013 IEEE 10th international conference on (pp. 182–190). IEEE.

  37. Yao, Y., Cao, Q., & Vasilakos, A. V. (2014). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. Transactions on Networking, 2(3). doi:10.1109/TNET.2014.2306592.

  38. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. Parallel and Distributed Systems, IEEE Transactions on, 25(12), 3264–3273.

    Article  Google Scholar 

  39. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012, March). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, 2012 proceedings IEEE (pp. 100–108). IEEE.

  40. Liu, J., Wang, Q., Wan, J., Xiong, J., & Zeng, B. (2013). Towards key issues of disaster aid based on wireless body area networks. KSII Transactions on Internet and Information Systems (TIIS), 7(5), 1014–1035.

    Article  Google Scholar 

  41. Liu, X. Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., et al. (2014). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel & Distributed Systems, 26(8), 2188–2197.

    Google Scholar 

  42. Ghaboosi, N., & Haghighat, A. T. (2007). Tabu search based algorithms for bandwidth-delay-constrained least-cost multicast routing. Telecommunication Systems, 34(3–4), 147–166.

    Article  Google Scholar 

  43. Semchedine, F., Bouallouche-Medjkoune, L., Bennacer, L., Aber, N., & Aïssani, D. (2012). Routing protocol based on Tabu search for wireless sensor networks. Wireless Personal Communications, 67(2), 105–112.

    Article  Google Scholar 

  44. El Rhazi, A., & Pierre, S. (2009). A Tabu search algorithm for cluster building in wireless sensor networks. Mobile Computing, IEEE Transactions on, 8(4), 433–444.

    Article  Google Scholar 

  45. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000, January). Energy-efficient communication protocol for wireless microsensor networks. In System sciences, 2000. Proceedings of the 33rd annual Hawaii international conference on (p. 10). IEEE.

  46. Cobo, L., Quintero, A., & Pierre, S. (2010). Ant-based routing for wireless multimedia sensor networks using multiple QoS metrics. Computer Networks, 54(17), 2991–3010.

    Article  Google Scholar 

  47. Güney, E., Altınel, I. K., Aras, N., & Ersoy, C. (2010). A tabu search heuristic for point coverage, sink location, and data routing in wireless sensor networks. In P. Cowling & P. Merz (Eds.), Evolutionary computation in combinatorial optimization (pp. 83–94). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-12139-5_8.

    Chapter  Google Scholar 

  48. Glover, F. (1990). Tanu search—Part II. ORSA Journal on Computing, 2(1), 4–32.

    Article  Google Scholar 

  49. Shen, J., Xu, F., & Zheng, P. (2005). A tabu search algorithm for the routing and capacity assignment problem in computer networks. Computers & Operations Research, 32(11), 2785–2800.

    Article  MATH  Google Scholar 

  50. García Villalba, L. J., Sandoval Orozco, A. L., Triviño Cabrera, A., & Barenco Abbas, C. J. (2009). Routing protocols in wireless sensor networks. Sensors, 9(11), 8399–8421.

    Article  Google Scholar 

  51. Handy, M. J., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In Mobile and wireless communications network, 2002. 4th international workshop on (pp. 368–372). IEEE.

  52. Russel, S., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). NJ: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Orojloo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orojloo, H., Haghighat, A.T. A Tabu search based routing algorithm for wireless sensor networks. Wireless Netw 22, 1711–1724 (2016). https://doi.org/10.1007/s11276-015-1060-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1060-7

Keywords

Navigation