Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Fast algorithms for determining (generalized) core groups in social networks

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

The structure of a large network (graph) can often be revealed by partitioning it into smaller and possibly more dense sub-networks that are easier to handle. One of such decompositions is based on “k-cores”, proposed in 1983 by Seidman. Together with connectivity components, cores are one among few concepts that provide efficient decompositions of large graphs and networks. In this paper we propose an efficient algorithm for determining the cores decomposition of a given network with complexity \({\mathcal{O}(m)}\), where m is the number of lines (edges or arcs). In the second part of the paper the classical concept of k-core is generalized in a way that uses a vertex property function instead of degree of a vertex. For local monotone vertex property functions the corresponding generalized cores can be determined in \({\mathcal{O}(m\cdot\max(\Delta,\log{n}))}\) time, where n is the number of vertices and Δ is the maximum degree. Finally the proposed algorithms are illustrated by the analysis of a collaboration network in the field of computational geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed A, Batagelj V, Fu X, Hong S-H, Merrick D, Mrvar A (2007) Visualisation and analysis of the internet movie database. In: Proceedings of the Asia-Pacific symposium on visualisation (APVIS2007), Sydney, NSW, Australia, 5–7 February 2007. IEEE, New York, 17–24

  • Alvarez-Hamelin JI, Dall’asta L, Barrat A, Vespignani A (2008) K-core decomposition of internet graphs: hierarchies, selfsimilarity and measurement biases. Netw Heterog Media 3(2): 371–393

    Article  MathSciNet  MATH  Google Scholar 

  • Batagelj V, Mrvar A (2003) Pajek—analysis and visualization of large networks. In: Jünger M, Mutzel P (eds) Graph drawing software. Springer, Berlin, pp 77–103. http://pajek.imfm.si

  • Batagelj V (2004) Pajek datasets: Geom. http://vlado.fmf.uni-lj.si/pub/networks/Data/Collab/Geom.htm

  • Batagelj V, Mrvar A (2000) Some analyses of Erdős collaboration graph. Soc Netw 22: 173–186

    Article  MathSciNet  Google Scholar 

  • Batagelj V, Mrvar A, Zaveršnik M (1999) Partitioning approach to visualization of large graphs. In: KratochvÍl J (ed) Proceedings of 7th international symposium on graph drawing, 15–19 September 1999, Štiřín Castle, Czech Republic (Lecture notes in computer science, vol. 1731). Springer, Berlin, pp 90–97

  • Batagelj V, Brandenburg FJ, Didimo W, Liotta G, Palladino P, Patrignani M (2010) Visual analysis of large graphs using (X;Y)-clustering and hybrid visualizations. In: IEEE Pacific visualization 2010 (PacVis ’10). IEEE, New YorK, pp 209–216

  • Beebe NHF (2002) Nelson H. F. Beebe’s bibliographies page. http://www.math.utah.edu/~beebe/bibliographies.html

  • Beiro MG, Alvarez-Hamelin JI, Busch JR (2008) A low complexity visualization tool that helps to perform complex systems analysis. New J Phys 10:125003, 1–18

    Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  • Dorogovtsev SN, Goltsev AV, Mendes JFF (2006) k-Core architecture and k-core percolation on complex networks. Phys D Nonlinear Phenom 224(1–2): 7–19

    Article  MathSciNet  MATH  Google Scholar 

  • Eisterlehner F, Hotho A, Jäschke R (eds) (2009) Proceedings of ECML PKDD discovery challenge 2009 (DC09). http://www.kde.cs.uni-kassel.de/ws/dc09/papers/proceedings.pdf

  • Garey MR, Johnson DS (1979) Computer and intractability. Freeman, San Francisco

    Google Scholar 

  • Janson S, Luczak MJ (2008) Asymptotic normality of the k-core in random graphs. Ann Appl Probab 18(3): 1085–1137

    Article  MathSciNet  MATH  Google Scholar 

  • Jäschke R, Marinho L, Hotho A, Schmidt-Thieme L, Stumme G (2007) Tag recommendations in folksonomies. Lecture notes in computer science, vol 4702. Springer, Berlin, pp 506–514

  • Jones B (2002) Computational geometry database. http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios.html, ftp://ftp.cs.usask.ca/pub/geometry/

  • LaNet-vi (2009) Large network visualization tool. http://xavier.informatics.indiana.edu/lanet-vi/

  • Seidman SB (1983) Network structure and minimum degree. Soc Netw 5: 269–287

    Article  MathSciNet  Google Scholar 

  • Schwartz J-M, Nacher JC (2009) Local and global modes of drug action in biochemical networks. BMC Chem Biol 9: 4–114

    Article  Google Scholar 

  • Wang J-C, Chiu C-C (2008) Recommending trusted online auction sellers using social network analysis. Expert Syst Appl Int J Arch 34(3): 1666–1679

    Article  Google Scholar 

  • Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Welsh DJA, Powell MB (1967) An upper bound for the chromatic number of a graph and its application to timetabling problems. Comput J 10(1): 85–86

    Article  MATH  Google Scholar 

  • Wuchty S, Almaas E (2005) Peeling the yeast protein network. Proteomics 5: 444–449

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Batagelj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batagelj, V., Zaveršnik, M. Fast algorithms for determining (generalized) core groups in social networks. Adv Data Anal Classif 5, 129–145 (2011). https://doi.org/10.1007/s11634-010-0079-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-010-0079-y

Keywords

Mathematics Subject Classification (2000)

Navigation