Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Population genetic structure of the Burrunan dolphin (Tursiops australis) in coastal waters of south-eastern Australia: conservation implications

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Burrunan dolphin, Tursiops australis, is a newly described species endemic to southern Australian coastal waters. The current distribution ranges from South Australia, east to Victoria and south to Tasmania. In the eastern region of their range, only two known resident populations of T. australis occur, Port Phillip Bay and the Gippsland Lakes. Little else is known about the population status and migration patterns of the species. Here we examine population genetics of T. australis using ten microsatellite loci and two sequences of mitochondrial DNA, the control region (~450 bp) and cytochrome b (~1,200 bp). A total of 163 T. australis samples were collected from various locations across the Victorian and Tasmanian coastlines. Genetic data showed the highest differentiation between the Port Phillip Bay and both Gippsland Lakes and Tasmanian samples. Network analysis, using concatenated mtDNA sequences, showed geographic segregation and Bayesian analysis, using microsatellite data, also supported the presence of two genetic clusters. Both microsatellite and mtDNA data indicated low genetic diversity when compared to levels reported for other dolphins. Maternal philopatry was suggested for Port Phillip Bay in particular. Our data suggest that T. australis from coastal waters of south-eastern Australia consists of two populations with little or no contemporary gene flow; one occurs in Port Phillip Bay; the second extends from the east coast of Tasmania across Bass Strait to Gippsland Lakes. Tursiops australis appears to be characterised by small, localised, genetically distinct populations and should thus be further assessed under local, national and international threatened species criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams LD, Rosel PE (2006) Population differentiation of the Atlantic spotted dolphin (Stenella frontalis) in western North Atlantic, including the Gulf of Mexico. Mar Biol 148:671–681

  • Bandelt H, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Bearzi M, Saylan CA, Hwang A (2009) Ecology and comparison of coastal and offshore bottlenose dolphins (Tursiops truncatus) in California. Mar Freshw Res 60(6):584–593. doi:10.1071/mf08279

    Article  Google Scholar 

  • Beck KM, Fair P, McFee W, Wolf D (1997) Heavy metals in livers of bottlenose dolphins stranded along the south Carolina coast. Mar Pollut Bull 34(9):734–739

    Article  CAS  Google Scholar 

  • Bejder L, Samuels A, Whitehead H, Gales N (2006a) Interpreting short-term behavioural responses to disturbance within a longitudinal perspective. Anim Behav 72:1149–1158. doi:10.1016/j.anbehav.2006.04.003

    Article  Google Scholar 

  • Bejder L, Samuels A, Whitehead H, Gales N, Mann J, Connor R, Heithaus M, Watson-Capps J, Flaherty C, Kruetzen M (2006b) Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance. Conserv Biol 20(6):1791–1798. doi:10.1111/j.1523-1739.2006.00540.x

    Article  PubMed  Google Scholar 

  • Bilgmann K, Moller LM, Harcourt RG, Gibbs SE, Beheregaray LB (2007) Genetic differentiation in bottlenose dolphins from South Australia: association with local oceanography and coastal geography. Mar Ecol-Prog Ser 341:265–276

    Article  CAS  Google Scholar 

  • Caballero S, Islas-Villanueva V, Tezanos-Pinto G, Duchene S, Delgado-Estrella A, Sanchez-Okrucky R, Mignucci-Giannoni AA (2011) Phylogeography, genetic diversity and population structure of common bottlenose dolphins in the wider Caribbean inferred from analyses of mitochondrial DNA control region sequences and microsatellite loci: conservation and management implications. Anim Conserv 15(1):95–112. doi:10.1111/j.1469-1795.2011.00493.x

    Article  Google Scholar 

  • Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99(6):616–623. doi:10.1093/jhered/esn048

    Article  CAS  PubMed  Google Scholar 

  • Cassens I, Van Waerebeek K, Best PB, Tzika A, Van Helden AL, Crespo EA, Milinkovitch MC (2005) Evidence for male dispersal along the coasts but no migration in pelagic waters in dusky dolphins (Lagenorhynchus obscurus). Mol Ecol 14:107–121

  • Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244

    Article  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631

    Article  CAS  PubMed  Google Scholar 

  • Charlton K, Taylor AC, McKechnie SW (2006) A note on divergent mtDNA lineages of bottlenose dolphins from coastal waters of southern Australia. J Cetacean Res Manag 8(2):173–179

    Google Scholar 

  • Charlton-Robb K, Gershwin L, Thompson R, Austin J, Owen K, McKechnie SW (2011) A new dolphin species, the Burrunan dolphin Tursiops australis sp. nov. endemic to southern Australian coastal water. PLoS ONE 6(9):e24047. doi:10.1371/journal.pone.0024047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Committee on Taxonomy (2012) List of marine mammal species and subspecies. The Society for Marine Mammalogy. Available at http://www.marinemammalscience.org

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Dunn W, Goldsworthy A, Glencross D, Charlton K (2001) Interactions between bottlenose dolphins and tour vessels in Port Philip Bay. Dolphin Research Institute, Melbourne

    Google Scholar 

  • Earl DA (2011) Structure Harvester v0.6.5 Available at http://users.soe.ucsc.edu/~dearl/software/structureHarvester/

  • Edyvane K, Baker J (1995) The South Australian regionalisation project: towards a marine regionalisation for Australia. In: Muldoon J (ed) Ocean rescue 2000 workshop series No. 1. Great Barrier Reef Marine Park Authority, Canberra

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction analysis. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arelequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed Central  Google Scholar 

  • Fernández R, García-Tiscar S, Begoña Santos M, López A, Martínez-Cedeira JA, Newton J, Pierce GJ (2011) Stable isotope analysis in two sympatric populations of bottlenose dolphins Tursiops truncatus: evidence of resource partitioning? Mar Biol 158:1043–1055. doi:10.1007/s00227-011-1629-3

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gibbs CF (1992) Oceanography of Bass Strait: implications for the food supply of little Penguins Eudyptula minor. EMU 91:395–401

    Article  Google Scholar 

  • Gilson A, Syvanen M, Levine K, Banks J (1998) Deer gender determination by polymerase chain reaction: validation study and application to tissues, bloodstains, and hair forensic samples from California. Calif Fish & Game 84(4):159–169

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices 2.9.3 edn. Available at: http://www2.unil.ch/popgen/softwares/fstat.htm

  • Hale PT (2002) Interactions between vessels and dolphins in Port Phillip Bay. Department of Natural Resources and Environment, Melbourne

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. 7.0.9.0 edn. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistic software package for education and data analysis. Paleontol Electron 4(1):9

    Google Scholar 

  • Hewitt CL, Campbell ML, Thresher RE, Martin RB, Boyd S, Cohen BF, Currie DR, Gomon MF, Keough MJ, Lewis JA, Lockett MM, Mays N, McArthur MA, O’Hara TD, Poore GCB, Ross DJ, Storey MJ, Watson JE, Wilson RS (2004) Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Mar Biol 144(1):183–202. doi:10.1007/s00227-003-1173-x

    Article  Google Scholar 

  • Hoelzel AR, Dahlheim M, Stern SJ (1998a) Low genetic variation among killer whales (Orcinus orca) in the eastern North Pacific and genetic differentiation between foraging specialists. J Hered 89(2):121–128

    Article  CAS  PubMed  Google Scholar 

  • Hoelzel AR, Potter CW, Best PB (1998b) Genetic differentiation between parapatric ‘nearshore’ and ‘offshore’ populations of the bottlenose dolphin. Proc R Soc Lond B Biol Sci 265(1402):1177–1183

    Article  CAS  Google Scholar 

  • Holdgate GR, Wagstaff B, Gallagher SJ (2011) Did Port Phillip Bay nearly dry up between 2800 and 1000 cal. yr BP? Bay floor channelling evidence, seismic and core dating. Aust J Earth Sci 58:157–175. doi:10.1080/08120099.2011.546429

    Article  CAS  Google Scholar 

  • Howes L, Scarpaci C, Parsons EC (2012) Ineffectiveness of a marine sanctuary zone to prtoect burrunan dolphins (Tursiops australis sp. nov.) from commercial tourism in Port Phillip Bay, Australia. J Ecotur 11(3):188–201

    Google Scholar 

  • Ingram SN, Rogan E (2002) Identifying critical areas and habitat preference of bottlenose dolphins Tursiops truncatus. Mar Ecol Prog Ser 244:247–255

    Article  Google Scholar 

  • Krützen M, Valsecchi E, Connor RC, Sherwin WB (2001) Characterization of microsatellite loci in Tursiops aduncus. Mol Ecol Notes 1:170–172

    Article  Google Scholar 

  • Krützen M, Barre LM, Möller LM, Heithaus MR, Simms C, Sherwin WB (2002) A biopsy system for small cetaceans: darting success and wound healing in Tursiops spp. Mar Mamm Sci 18:863–878

    Article  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Lundquista D, Gemmella NJ, B Würsig B, Markowitzc T (2013) Dusky dolphin movement patterns: short-term effects of tourism. New Zealand J Mar Freshw Res online (28 Jun 2013):1–20. doi:10.1080/00288330.2013.778301

  • Mead JG, Potter CW (1995) Recognising two populations of the bottlenose dolphin (Tursiops truncatus) off the Atlantic coast of North America—morphological and ecological considerations. IBI Rep 5:31–44

    Google Scholar 

  • Mendez M, Rosenbatan HC, Bordino P (2008) Conservation genetics of the franciscana dolphin in Northern Argentina: population structure, by-catch impacts, and management implications. Conserv Genet 9(2):419–435. doi:10.1007/s10592-007-9354-7

    Article  Google Scholar 

  • Mirimin L, Westgate A, Rogan E, Rosel P, Read A, Coughlan J, Cross T (2009) Population structure of short-beaked common dolphins (Delphinus delphis) in the North Atlantic Ocean as revealed by mitochondrial and nuclear genetic markers. Mar Biol 156(5):821–834. doi:10.1007/s00227-008-1120-y

    Article  Google Scholar 

  • Mirimin L, Banguera-Hinestroza E, Dillane E, Hoelzel AR, Cross TF, Rogan E (2011a) Insights into genetic diversity, parentage, and group composition of atlantic white-sided dolphins (Lagenorhynchus acutus) off the west of Ireland based on nuclear and mitochondrial genetic markers. J Hered 102(1):79–87. doi:10.1093/jhered/esq106

    Article  CAS  PubMed  Google Scholar 

  • Mirimin L, Miller R, Dillane E, Ingram S, Cross T, Rogan E (2011b) Fine-scale population genetic structuring of bottlenose dolphins in Irish coastal waters. Anim Conserv 14:342–353. doi:10.1111/j.1469-1795.2010.00432.x

    Article  Google Scholar 

  • Möller LM (2012) Sociogenetic structure, kin associations and bonding in delphinids. Molecular Ecology 21(3):745–764. doi:10.1111/j.1365-294X.2011.05405.x

    Article  PubMed  Google Scholar 

  • Möller LM, Beheregaray LB (2004) Genetic evidence for sex-biased dispersal in resident bottlenose dolphins (Tursiops aduncus). Mol Ecol 13(6):1607–1612

    Article  PubMed  Google Scholar 

  • Möller LM, Wiszniewski J, Allen SJ, Beheregaray LB (2007) Habitat type promotes rapid and extremely localised genetic differentiation in dolphins. Mar Freshw Res 58(7):640–648. doi:10.1071/mf06218

    Article  Google Scholar 

  • Möller LM, Bilgmann K, Charlton-Robb K, Beheregaray L (2008) Multi-gene evidence for a new bottlenose dolphin species in southern Australia. Mol Phylogenet Evol 49(2):674–681

    Article  PubMed  Google Scholar 

  • Moura AE, Nielsen SCA, Vilstrup J, Moreno-Mayar JV, Gilbert MTP, Gray HWI, Natoli A, Möller LM, Hoelzel AR (2013) Recent diversification of a marine genus (Tursiops spp.) tracks habitat preference and environmental change. Syst Biol 62(6):865–877

    Article  PubMed  Google Scholar 

  • Natoli A, Peddemors VM, Hoelzel AR (2004) Population structure and speciation in the genus Tursiops based on microsatellite and mitochondrial DNA analyses. J Evol Biol 17(2):363–375

    Article  CAS  PubMed  Google Scholar 

  • Natoli A, Birkun A, Aguilar A, Lopez A, Hoelzel AR (2005) Habitat structure and the dispersal of male and female bottlenose dolphins (Tursiops truncatus). Proc R Soc B-Biol Sci 272(1569):1217–1226. doi:10.1098/rspb.2005.3076

    Article  CAS  Google Scholar 

  • Owen K, Charlton-Robb K, Thompson R (2011) Resolving the trophic relations of cryptic species: an example using stable isotope analysis of dolphin teeth. PLoS ONE 6(2):e16457. doi:10.1371/journal.pone.0016457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  CAS  PubMed  Google Scholar 

  • Parsons KM, Noble LR, Reid RJ, Thompson PM (2002) Mitochondrial genetic diversity and population structuring of UK bottlenose dolphins (Tursiops truncatus): is the NE Scotland population demographically and geographically isolated? Biol Conserv 108:175–182

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. population genetic software for teaching and research. Mol Ecol Notes 6:288–298

    Article  Google Scholar 

  • Perrin WF, Rosel PE, Cipriano F (2013) How to contend with paraphyly in the taxonomy of the delphininae cetaceans? Mar Mamm Sci 29(4):567–588

    CAS  Google Scholar 

  • Pilot M, Dahlheim ME, Hoelzel AR (2010) Social cohesion among kin, gene flow without dispersal and the evolution of population genetic structure in the killer whale (Orcinus orca). J Evol Biol 23:20–31. doi:10.1111/j.1420-9101.2009.01887.x

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Poore GCB (1982) Benthic Communities of the Gippsland Lakes, Victoria. Aust J Mar Freshw Res 33:901–915

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rakoa N, Fortunaa CM, Holcera D, Mackelwortha P, Nimak-Wood M, Pleslića G, Sebastianutto L, Vilibićf I, Wiemanna A, Picciuling M (2013) Leisure boating noise as a trigger for the displacement of the bottlenose dolphins of the Cres-Lošinj archipelago (northern Adriatic Sea, Croatia). Mar Pollut Bull 68(1–2):77–84

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Google Scholar 

  • Reeves RR, Smith BD, Crespo EA, Notarbartolo di Sciara G Dolphins, Whales and Porpoises: 2002–2010 Conservation Plan for the World’s Cetaceans. In: IUCN/SSC Cetacean Specialist Group 2003, Gland and Cambridge

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Segura I, Rocha-Olivares A, Flores-Ramirez S, Rojas-Bracho L (2006) Conservation implications of the genetic and ecological distinction of Tursiops truncatus ecotypes in the Gulf of California. Biol Conserv 133(3):336–346. doi:10.1016/j.biocon.2006.06.017

    Article  Google Scholar 

  • Shinohara M, Domingo-Roura X, Takenaka O (1997) Microsatellites in the bottlenose dolphin Tursiops truncatus. Mol Ecol 6(7):695–696

    Article  CAS  PubMed  Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101(42):15261–15264. doi:10.1073/pnas.0403809101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stockin KA, Law RJ, Duignan PJ, Jones GW, Porter L, Mirimin L, Meynier L, Orams MB (2007) Trace elements, PCBs and organochlorine pesticides in New Zealand common dolphins (Delphinus sp.). Sci Total Environ 387(1–3):333–345

    Article  CAS  PubMed  Google Scholar 

  • Suetin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analysis. Can J Zool 69:82–91

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tezanos-Pinto G, Baker CS, Russell K, Martien K, Baird RW, Hutt A, Stone G, Mignucci-Giannoni AA, Caballero S, Endo T, Lavery S, Oremus M, Olavarria C, Garrigue C (2009) A worldwide perspective on the population structure and genetic diversity of bottlenose dolphins (tursiops truncatus) in New Zealand. J Hered 100(1):11–24

    Article  CAS  PubMed  Google Scholar 

  • Valsecchi E, Amos W (1996) Microsatellite markers for the study of cetacean populations. Mol Ecol 5(1):151–156

    Article  CAS  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Willis DPM, Shipe P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed Central  PubMed  Google Scholar 

  • Warren-Smith ÁB, Dunn WL (2006) Epimeletic Behaviour Toward a Seriously Injured Juvenile Bottlenose Dolphin (Tursiops sp.) in Port Phillip, Victoria, Australia. Aquat Mamm 32(3):357–362

    Article  Google Scholar 

  • Waters JM, Roy MS (2003) Marine biogeography of southern Australia: phylogeographical structure in a temperate sea-star. J Biogeogr 30(12):1787–1796

    Article  Google Scholar 

  • Waters JM, McCulloch GA, Eason JA (2007) Marine biogeographical structure in two highly dispersive gastropods: implications for trans-Tasman dispersal. J Biogeogr 34:678–687

    Article  Google Scholar 

  • Weir BS (1996) Genetic Data Analysis II. Sunderland, Mass

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wheeler PJ, Peterson JA, Gordon-Brown LN (2010) Channel dredging trials at lakes entrance, Australia: a GIS-based approach for monitoring and assessing bathymetric change. J Coast Res 26(6):1085–1095. doi:10.2112/jcoastres-d-09-00043.1

    Article  Google Scholar 

  • Wiemann A, Andersen LW, Berggren P, Siebert U, Benke H, Teilmann J, Lockyer C, Pawliczka I, Skora K, Roos A, Lyrholm T, Paulus KB, Ketmaier V, Tiedemann R (2010) Mitochondrial control region and microsatellite analyses on harbour porpoise (Phocoena phocoena) unravel population differentiation in the Baltic Sea and adjacent waters. Conserv Genet 11(1):195–211. doi:10.1007/s10592-009-0023-x

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus gentypes. Genetics 163:1177–1191

    PubMed Central  PubMed  Google Scholar 

  • Wilson B, Reid RJ, Grellier K, Thompson PM, Hammond PS (2004) Considering the temporal when managing the spatial: a population range expansion impacts protected areas-based management for bottlenose dolphins. Anim Conserv 7(4):331–338

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Department of Primary Industries, Parks, Water and Environment (DPIPWE) Tasmanian State Government, in particular past and present members of the Biodiversity Conservation Branch for collection of and access to Tursiops samples from Tasmanian waters. We acknowledge past and present members of Dolphin Research Institute (DRI) for the in-kind support and access to the DRI research vessel. We also acknowledge the dedicated network of volunteers that assisted in sampling of deceased animals and in the collection of data during the biopsy process. Thanks also to V. Caron, S. Ho, T. Draper, R. Thompson and J. Sumner for useful discussions. This work was funded by Holsworth Wildlife Endowment, Monash University Small Grant Scheme and the Princess Melikoff Trust Marine Mammal Conservation Program. Collection of samples was conducted under the Wildlife Act 1975 Research Permit #10005013 & #10003250, issued by the Department of Environment and Primary Industries (Victorian State Government) and was approved by the Biological Sciences Animal Ethics Committee (Monash University) BSCI/2006/10 and BSCI/2008/21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Charlton-Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charlton-Robb, K., Taylor, A.C. & McKechnie, S.W. Population genetic structure of the Burrunan dolphin (Tursiops australis) in coastal waters of south-eastern Australia: conservation implications. Conserv Genet 16, 195–207 (2015). https://doi.org/10.1007/s10592-014-0652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0652-6

Keywords

Navigation