Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Energy constrained clustering routing method based on particle swarm optimization

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Wireless sensor networks are made up of a large number of wireless sensor nodes which are exploited to sense parameters in environment such as temperature, moisture level, pressure, light intensity, vibration, and so on. In order to effectively reduce energy consumption of WSN, this paper proposes a novel energy constrained clustering routing method based on particle swarm optimization. The simulation results show that proposed method can achieve better overall performance for both energy consumption and network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zimos, E., Toumpakaris, D., Munteanu, A., Deligiannis, N.: Multiterminal source coding with copula regression for wireless sensor networks gathering diverse data. IEEE Sens. J. 17(1), 139–150 (2017)

    Article  Google Scholar 

  2. Zhu, J., Jiang, D.D., Ba, S.W., Zhang, Y.P.: A game-theoretic power control mechanism based on hidden Markov model in cognitive wireless sensor network with imperfect information. Neurocomputing 220, 76–83 (2017)

    Article  Google Scholar 

  3. Yan, X., Zhang, L., Wu, Y., Luo, Y., Zhang, X.: Secure smart grid communications and information integration based on digital watermarking in wireless sensor networks. Enterp. Inf. Sys. 11(2), 223–249 (2017)

    Article  Google Scholar 

  4. Portocarrero, J.M.T., Delicato, F.C., Pires, P.E., Costa, B., Li, W., Si, W.S., Zomaya, A.Y.: RAMSES: a new reference architecture for self-adaptive middleware in wireless sensor networks. Ad Hoc Netw. 55, 3–27 (2017)

    Article  Google Scholar 

  5. Mangia, M., Bortolotti, D., Pareschi, F., Bartolini, A., Benini, L., Rovatti, R., Setti, G.: Zeroing for HW-efficient compressed sensing architectures targeting data compression in wireless sensor networks. Microprocess. Microsyst. 48, 69–79 (2017)

    Article  Google Scholar 

  6. Le, D.T., Duc, T.L., Zalyubovskiy, V.V., Kim, D.S., Choo, H.: Collision-tolerant broadcast scheduling in duty-cycled wireless sensor networks. J. Parallel Distrib. Comput. 100, 42–56 (2017)

    Article  Google Scholar 

  7. Kumar, V., Dhok, S.B., Tripathi, R., Tiwari, S.: Cluster size optimisation with Tunable Elfes sensing model for single and multi-hop wireless sensor networks. Int. J. Electron. 104(2), 312–327 (2017)

    Article  Google Scholar 

  8. Gope, P., Lee, J., Quek, T.Q.S.: Resilience of DoS attacks in designing anonymous user authentication protocol for wireless sensor networks. IEEE Sens. J. 17(2), 498–503 (2017)

    Article  Google Scholar 

  9. Gong, H.Y., Fu, L.Y., Fu, X.Z., Zhao, L.T., Wang, K.N., Wang, X.B.: Distributed multicast tree construction in wireless sensor networks. IEEE Trans. Inf. Theory 63(1), 280–296 (2017)

    Article  MathSciNet  Google Scholar 

  10. Gholipour, M., Haghighat, A.T., Meybodi, M.R.: Hop-by-Hop congestion avoidance in wireless sensor networks based on genetic support vector machine. Neurocomputing 223, 63–76 (2017)

    Article  Google Scholar 

  11. Costa, D.G., Vasques, F., Portugal, P.: Enhancing the availability of wireless visual sensor networks: selecting redundant nodes in networks with occlusion. Appl. Math. Model. 42, 223–243 (2017)

    Article  MathSciNet  Google Scholar 

  12. Zahedi, Z.M., Akbari, R., Shokouhifar, M., Safaei, F., Jalali, A.: Swarm intelligence based fuzzy routing protocol for clustered wireless sensor networks. Expert Syst. Appl. 55, 313–328 (2016)

    Article  Google Scholar 

  13. Tang, C.W., Tan, Q., Han, Y.N., An, W., Li, H.B., Tang, H.: An energy harvesting aware routing algorithm for hierarchical clustering wireless sensor networks. Ksii Trans. Internet Inf. Syst. 10(2), 504–521 (2016)

    Google Scholar 

  14. Shwe, H.Y., Kumar, A., Chong, P.H.J.: Building efficient multi-level wireless sensor networks with cluster-based routing protocol. KSII Trans. Internet Inf. Syst. 10(9), 4272–4286 (2016)

    Google Scholar 

  15. Sabet, M., Naji, H.: An energy efficient multi-level route-aware clustering algorithm for wireless sensor networks: a self-organized approach. Comput. Electr. Eng. 56, 399–417 (2016)

    Article  Google Scholar 

  16. Ren, P., Qian, J.S.: Energy-aware and load-balancing cluster routing protocol for wireless sensor networks in long-narrow region. J. Intell. Fuzzy Syst. 31(4), 2257–2269 (2016)

    Article  Google Scholar 

  17. Meng, X.L., Shi, X.C., Wang, Z., Wu, S., Li, C.L.: A grid-based reliable routing protocol for wireless sensor networks with randomly distributed clusters. Ad Hoc Netw. 51, 47–61 (2016)

    Article  Google Scholar 

  18. Julie, E.G., Tamilselvi, S., Robinson, Y.H.: Performance analysis of energy efficient virtual back bone path based cluster routing protocol for wsn. Wirel. Pers. Commun. 91(3), 1171–1189 (2016)

    Article  Google Scholar 

  19. Jannu, S., Jana, P.K.: A grid based clustering and routing algorithm for solving hot spot problem in wireless sensor networks. Wirel. Netw. 22(6), 1901–1916 (2016)

    Article  Google Scholar 

  20. Huynh, T.T., Dinh-Duc, A.V., Tran, C.H.: Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. J. Commun. Netw. 18(4), 580–588 (2016)

    Article  Google Scholar 

  21. Ding, Y.S., Chen, R., Hao, K.R.: A rule-driven multi-path routing algorithm with dynamic immune clustering for event-driven wireless sensor networks. Neurocomputing 203, 139–149 (2016)

    Article  Google Scholar 

  22. Aslam, M., Munir, E.U., Rafique, M.M., Hu, X.P.: Adaptive energy-efficient clustering path planning routing protocols for heterogeneous wireless sensor networks. Sustain. Comput. Inform. Syst. 12, 59–73 (2016)

    Google Scholar 

  23. Abasikeles-Turgut, I., Hafif, O.G.: NODIC: a novel distributed clustering routing protocol in WSNs by using a time-sharing approach for CH election. Wirel. Netw. 22(3), 1023–1034 (2016)

    Article  Google Scholar 

  24. Kuila, P., Gupta, S.K., Jana, P.K.: A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm Evolut. Comput. 12, 48–56 (2013)

    Article  Google Scholar 

  25. Chor, P.L., Can, F., Jim, M.N., Yew, H.A.: Efficient load-balanced clustering algorithms for wireless sensor networks. Comput. Commun. 31(4), 750–759 (2008)

    Article  Google Scholar 

  26. Bari, A., Jaekel, A., Bandyopadhyay, S.: Clustering strategies for improving the lifetime of two-tiered sensor networks. Comput. Commun. 31(14), 3451–3459 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This paper Supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No.KJ1711278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Luo, W. & Ma, X. Energy constrained clustering routing method based on particle swarm optimization. Cluster Comput 22 (Suppl 3), 7629–7635 (2019). https://doi.org/10.1007/s10586-018-2339-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2339-0

Keywords

Navigation