Abstract
This paper discusses the numerical solution of linear 1-D singularly perturbed parabolic convection-diffusion-reaction problems with two small parameters using a moving mesh-adaptive algorithm which adapts meshes to boundary layers. The meshes are generated by the equidistribution of a special positive monitor function. Parameter independent uniform convergence is shown for a class of model problems and the obtained result hold even for the limiting case where the perturbation parameters are zero. Numerical experiments are presented that illustrate the first-order parameter uniform convergence, and also show that the new approach has better accuracy compared with current methods.
Similar content being viewed by others
References
Arnold, D.: A concise introduction to numerical analysis. Manuscript (2001)
Beckett, M.G., Mackenzie, J.A.: Convergence analysis of finite difference approximations on equidistribted grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35, 87–109 (2000)
Clavero, C., Jorge, J.C., Lisbona, F.: A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems. J. Comput. Appl. Math 154, 415–429 (2003)
Das, P., Natesan, S.: Richardson extrapolation method for singularly perturbed convection-diffusion problems on adaptively generated mesh. CMES Comput. Model. Eng. Sci. 90, 463–485 (2013)
Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary value problems. Appl. Math. Comput. 249, 265–277 (2014)
Das, P., Natesan, S.: Adaptive mesh generation for singularly perturbed fourth- order ordinary differential equations. Int. J. Comput. Math. 92(3), 562–578 (2015)
El-Gamel, M.: The sinc-Galerkin method for solving singularly perturbed reaction diffusion problem. Electron. Trans. Numer. Anal. 23, 129–140 (2006)
Emmrich, E.: Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations. Comput. Methods Appl. Math. 9, 37–62 (2009)
Emmrich, E., Grigorieff, R.D.: Supraconvergence of a finite difference scheme for elliptic boundary value problems of the third kind in fractional order sobolev spaces. Comput. Methods Appl. Math. 6, 154–177 (2006)
Evans, G., Blackledge, J., Yardley, P.: Numerical methods for partial differential equations. Springer, Berlin (2000)
Gowrisankar, S., Natesan, S.: The parameter uniform numerical method for singularly perturbed parabolic reaction diffusion problems on equidistributed grids. Appl. Math. Lett. 26, 1053–1060 (2013)
Gowrisankar, S., Natesan, S.: Robust numerical scheme for singularly perturbed convection-diffusion parabolic initial-boundary-value problems on equidistributed grids. Comput. Phys. Commun. 185, 2008–2019 (2014)
Huang, W.: Unconditionally stable high-order time integration for moving mesh finite difference solution of linear convection-diffusion equations. Int. J. Comput. Math. (2014). doi:10.1080/00207160.2014.927447
Huang, W., Kamenski, L.: A geometric discretization and a simple implementation for variational mesh generation and adaptation. (2014, ArXiv e-prints)
Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. SIAM J. Numer. Anal. 31, 709–730 (1994)
Huang, W., Russell, R.D.: Adaptive moving mesh methods. Springer, New York (2011)
Kadalbajoo, M.K., Yadaw, A.S.: Parameter uniform finite element method for two parameter singularly perturbed parabolic reaction diffusion problems. Int. J. Comput. Methods. 9(4), (2012)
Kopteva, N., Stynes, M.: A robust adapive method for a quasilinear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39, 1446–1467 (2001)
Linß, T., Roos, H.: Analysis of finite difference schemes for a singularly perturbed problems with two parameters. J. Math. Anal. Appl. 289, 355–366 (2004)
Naidu, D.S.: Singular perturbations and time scales in control theory and applications: an overview. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9(2), 233–278 (2002)
Naidu, D.S., Calise, A.: Singular perturbations and time scales in guidance and control of aerospace systems: a survey. J. Guidance Control Dynam. 24(6), 1057–1078 (2001)
Ramos, J.I.: An exponentially fitted method for singularly perturbed one dimensional parabolic problems. Appl. Math. Comput. 161, 513–525 (2005)
Rashidinia, J., Barati, A., Nabati, M.: Appication of sinc- Galerkin method to singulary perturbed parabolic convection diffusion problems. Numer. Algorithms 3, 643–662 (2014)
Riordan, E.O., Pickett, M.L., Shishkin, G.I.: Singularly perturbed problems modelling reaction-convection-diffusion processes. Comput. Methods Appl. Math. 3(3), 424–442 (2003)
Riordan, E.O., Pickett, M.L., Shishkin, G.I.: Parameter uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problemssingularly perturbed problems modelling reaction-convection-diffusion processes. Math. Comput. 75(255), 1136–1154 (2006)
Sikwila, S., Shateyi, S.: A moving mesh method for singularly perturbed problems. Abstr. Appl. Anal. 2013, 1–11 (2013)
Thalhammer, M.: On the convergence behavior of variable stepsize multistep methods for singularly perturbed problems. BIT 44, 343–361 (2004)
Varga, R.S.: Matrix iterative analysis, 2nd edn. Springer, New York (2009)
Vigo-Aguiar, J., Natesan, S.: A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27, 195–206 (2004)
Xu, X., Huang, W., Russell, R.D., Williams, J.F.: Convergence of de boors algorithm for the generation of equidistributing meshes. IMA J. Numer. Anal. 31, 580–596 (2011)
Zhang, Y., Naidu, D.S., Cai, C., Zou, Y.: Singular perturbations and time scales in control theory and applications: an overview 2002–2012. Int. J. Inf. Syst. Sci. 9(1), 1–36 (2014)
Acknowledgments
The first author expresses his thank to the Einstein Foundation and International Mathematical Union fellowship program for supporting his research visit at TU Berlin.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Mechthild Thalhammer.
This research was supported by the Einstein Foundation and International Mathematical Union program.
Rights and permissions
About this article
Cite this article
Das, P., Mehrmann, V. Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters. Bit Numer Math 56, 51–76 (2016). https://doi.org/10.1007/s10543-015-0559-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10543-015-0559-8
Keywords
- Parabolic partial differential equation
- Convection-diffusion-reaction problem
- Adaptive mesh
- Moving mesh method
- Mesh equidistribution
- Singularly perturbed problem
- Upwind scheme
- Uniform convergence