Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper discusses the numerical solution of linear 1-D singularly perturbed parabolic convection-diffusion-reaction problems with two small parameters using a moving mesh-adaptive algorithm which adapts meshes to boundary layers. The meshes are generated by the equidistribution of a special positive monitor function. Parameter independent uniform convergence is shown for a class of model problems and the obtained result hold even for the limiting case where the perturbation parameters are zero. Numerical experiments are presented that illustrate the first-order parameter uniform convergence, and also show that the new approach has better accuracy compared with current methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnold, D.: A concise introduction to numerical analysis. Manuscript (2001)

  2. Beckett, M.G., Mackenzie, J.A.: Convergence analysis of finite difference approximations on equidistribted grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 35, 87–109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clavero, C., Jorge, J.C., Lisbona, F.: A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems. J. Comput. Appl. Math 154, 415–429 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Das, P., Natesan, S.: Richardson extrapolation method for singularly perturbed convection-diffusion problems on adaptively generated mesh. CMES Comput. Model. Eng. Sci. 90, 463–485 (2013)

    MathSciNet  Google Scholar 

  5. Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary value problems. Appl. Math. Comput. 249, 265–277 (2014)

    Article  MathSciNet  Google Scholar 

  6. Das, P., Natesan, S.: Adaptive mesh generation for singularly perturbed fourth- order ordinary differential equations. Int. J. Comput. Math. 92(3), 562–578 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. El-Gamel, M.: The sinc-Galerkin method for solving singularly perturbed reaction diffusion problem. Electron. Trans. Numer. Anal. 23, 129–140 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Emmrich, E.: Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations. Comput. Methods Appl. Math. 9, 37–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Emmrich, E., Grigorieff, R.D.: Supraconvergence of a finite difference scheme for elliptic boundary value problems of the third kind in fractional order sobolev spaces. Comput. Methods Appl. Math. 6, 154–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Evans, G., Blackledge, J., Yardley, P.: Numerical methods for partial differential equations. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  11. Gowrisankar, S., Natesan, S.: The parameter uniform numerical method for singularly perturbed parabolic reaction diffusion problems on equidistributed grids. Appl. Math. Lett. 26, 1053–1060 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gowrisankar, S., Natesan, S.: Robust numerical scheme for singularly perturbed convection-diffusion parabolic initial-boundary-value problems on equidistributed grids. Comput. Phys. Commun. 185, 2008–2019 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, W.: Unconditionally stable high-order time integration for moving mesh finite difference solution of linear convection-diffusion equations. Int. J. Comput. Math. (2014). doi:10.1080/00207160.2014.927447

  14. Huang, W., Kamenski, L.: A geometric discretization and a simple implementation for variational mesh generation and adaptation. (2014, ArXiv e-prints)

  15. Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. SIAM J. Numer. Anal. 31, 709–730 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang, W., Russell, R.D.: Adaptive moving mesh methods. Springer, New York (2011)

    Book  MATH  Google Scholar 

  17. Kadalbajoo, M.K., Yadaw, A.S.: Parameter uniform finite element method for two parameter singularly perturbed parabolic reaction diffusion problems. Int. J. Comput. Methods. 9(4), (2012)

  18. Kopteva, N., Stynes, M.: A robust adapive method for a quasilinear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39, 1446–1467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Linß, T., Roos, H.: Analysis of finite difference schemes for a singularly perturbed problems with two parameters. J. Math. Anal. Appl. 289, 355–366 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Naidu, D.S.: Singular perturbations and time scales in control theory and applications: an overview. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9(2), 233–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Naidu, D.S., Calise, A.: Singular perturbations and time scales in guidance and control of aerospace systems: a survey. J. Guidance Control Dynam. 24(6), 1057–1078 (2001)

    Article  Google Scholar 

  22. Ramos, J.I.: An exponentially fitted method for singularly perturbed one dimensional parabolic problems. Appl. Math. Comput. 161, 513–525 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rashidinia, J., Barati, A., Nabati, M.: Appication of sinc- Galerkin method to singulary perturbed parabolic convection diffusion problems. Numer. Algorithms 3, 643–662 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Riordan, E.O., Pickett, M.L., Shishkin, G.I.: Singularly perturbed problems modelling reaction-convection-diffusion processes. Comput. Methods Appl. Math. 3(3), 424–442 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Riordan, E.O., Pickett, M.L., Shishkin, G.I.: Parameter uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problemssingularly perturbed problems modelling reaction-convection-diffusion processes. Math. Comput. 75(255), 1136–1154 (2006)

    Article  Google Scholar 

  26. Sikwila, S., Shateyi, S.: A moving mesh method for singularly perturbed problems. Abstr. Appl. Anal. 2013, 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Thalhammer, M.: On the convergence behavior of variable stepsize multistep methods for singularly perturbed problems. BIT 44, 343–361 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Varga, R.S.: Matrix iterative analysis, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  29. Vigo-Aguiar, J., Natesan, S.: A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27, 195–206 (2004)

    Article  MATH  Google Scholar 

  30. Xu, X., Huang, W., Russell, R.D., Williams, J.F.: Convergence of de boors algorithm for the generation of equidistributing meshes. IMA J. Numer. Anal. 31, 580–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Y., Naidu, D.S., Cai, C., Zou, Y.: Singular perturbations and time scales in control theory and applications: an overview 2002–2012. Int. J. Inf. Syst. Sci. 9(1), 1–36 (2014)

    Google Scholar 

Download references

Acknowledgments

The first author expresses his thank to the Einstein Foundation and International Mathematical Union fellowship program for supporting his research visit at TU Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Mehrmann.

Additional information

Communicated by Mechthild Thalhammer.

This research was supported by the Einstein Foundation and International Mathematical Union program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Mehrmann, V. Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters. Bit Numer Math 56, 51–76 (2016). https://doi.org/10.1007/s10543-015-0559-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0559-8

Keywords

Mathematics Subject Classification

Navigation