Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Irreversible Electroporation: An In Vivo Study with Dorsal Skin Fold Chamber

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Irreversible electroporation (IRE) has been proposed to destroy large amounts of tumorous tissue and shows advantages over thermal therapies. Unfortunately, carefully constructed studies assessing impact in in vivo tumor systems and a direct comparison of IRE with thermal therapy are lacking. In this study, we investigate the effect of IRE in a human prostate cancer (LNCaP) grown in a thin, essentially two-dimensional, dorsal skin fold chamber system. Detailed experimental characterizations of the electrical and thermal responses of the tissue were performed yielding the first thermal response measurement in vivo of its kind that we are aware of. The interaction and coupling of electrical and thermal responses were further discussed. The threshold of the tumor injury was determined for human prostate tumor model, and the threshold value (600–1300 V cm−1) is dependent on the IRE parameters including pulse duration and pulse number. This dependence was explained in the context of tissue electrical conductivity change during IRE. Further, the thermal injury was found not to be a dominant factor in IRE with our system, which is in agreement with previous numerical studies. Finally, it appears that the local electrical heterogeneity of the tumor tissue reduces the effectiveness of IRE in some sections of the tumor (leading to live tumor patches).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Al-Sakere, B., F. Andre, C. Bernat, E. Connault, P. Opolon, R. V. Davalos, B. Rubinsky, and L. M. Mir. Tumor ablation with irreversible electroporation. PLoS ONE 2:e1135, 2007.

    Article  PubMed  Google Scholar 

  2. Appelbaum, L., E. Ben-David, J. Sosna, Y. Nissenbaum, and S. N. Goldberg. US findings after irreversible electroporation ablation: radiologic–pathologic correlation. Radiology 262:117–125, 2012.

    Article  PubMed  Google Scholar 

  3. Arena, C., M. Sano, J. Rossmeisl, J. Caldwell, P. Garcia, M. Rylander, and R. Davalos. High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contraction. Biomed. Eng. Online 10:102, 2011.

    Article  PubMed  Google Scholar 

  4. Arena, C. B., M. B. Sano, M. N. Rylander, and R. V. Davalos. Theoretical considerations of tissue electroporation with high-frequency bipolar pulses. IEEE Trans. Biomed. Eng. 58:1474–1482, 2011.

    Article  PubMed  Google Scholar 

  5. Bagla, S., and D. Papadouris. Percutaneous irreversible electroporation of surgically unresectable pancreatic cancer: a case report. J. Vasc. Interv. Radiol. 23:142–145, 2012.

    Article  PubMed  Google Scholar 

  6. Bhowmick, S., N. E. Hoffmann, and J. C. Bischof. Thermal therapy of prostate tumor tissue in the dorsal skin flap chamber. Microvasc. Res. 64:170–173, 2002.

    Article  PubMed  Google Scholar 

  7. Chao, B. H., X. He, and J. C. Bischof. Pre-treatment inflammation induced by TNF-alpha augments cryosurgical injury on human prostate cancer. Cryobiology 49:10–27, 2004.

    Article  PubMed  CAS  Google Scholar 

  8. Davalos, R. V., I. L. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Davalos, R. V., B. Rubinsky, and L. M. Mir. Theoretical analysis of the thermal effects during in vivo tissue electroporation. Bioelectrochemistry 61:99–107, 2003.

    Article  PubMed  CAS  Google Scholar 

  10. Deodhar, A., T. Dickfeld, G. W. Single, W. C. Hamilton, Jr., R. H. Thornton, C. T. Sofocleous, M. Maybody, M. Gonen, B. Rubinsky, and S. B. Solomon. Irreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronization. AJR Am. J. Roentgenol. 196:W330–W335, 2011.

    Article  PubMed  Google Scholar 

  11. Deodhar, A., S. Monette, G. W. Single, Jr., W. C. Hamilton, Jr., R. Thornton, M. Maybody, J. A. Coleman, and S. B. Solomon. Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology 77:754–760, 2011.

    Article  PubMed  Google Scholar 

  12. Duck, F. A. Physical Properties of Tissue: A Comprehensive Reference Book. New York: Academic Press, 1990.

    Google Scholar 

  13. Edd, J. F., L. Horowitz, R. V. Davalos, L. M. Mir, and B. Rubinsky. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans. Biomed. Eng. 53:1409–1415, 2006.

    Article  PubMed  Google Scholar 

  14. Ellis, T. L., P. A. Garcia, J. H. Rossmeisl, Jr., N. Henao-Guerrero, J. Robertson, and R. V. Davalos. Nonthermal irreversible electroporation for intracranial surgical applications. Laboratory investigation. J. Neurosurg. 114:681–688, 2011.

    Article  PubMed  Google Scholar 

  15. Garcia, P. A., J. H. Rossmeisl, Jr., R. E. Neal, II, T. L. Ellis, and R. V. Davalos. A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed. Eng. Online 10:34, 2011.

    Article  PubMed  Google Scholar 

  16. Garcia, P. A., J. H. Rossmeisl, R. E. Neal, T. L. Ellis, J. D. Olson, N. Henao-Guerrero, J. Robertson, and R. V. Davalos. Intracranial nonthermal irreversible electroporation: in vivo analysis. J. Membr. Biol. 236:127–136, 2010.

    Article  PubMed  CAS  Google Scholar 

  17. Goel, R., D. Swanlund, J. Coad, G. F. Paciotti, and J. C. Bischof. TNF-alpha-based accentuation in cryoinjury—dose, delivery, and response. Mol. Cancer Ther. 6:2039–2047, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. Guo, Y., Y. Zhang, R. Klein, G. M. Nijm, A. V. Sahakian, R. A. Omary, G. Y. Yang, and A. C. Larson. Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma. Cancer Res. 70:1555–1563, 2010.

    Article  PubMed  CAS  Google Scholar 

  19. He, X., and J. C. Bischof. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit. Rev. Biomed. Eng. 31:355–421, 2003.

    Article  PubMed  Google Scholar 

  20. Ivorra, A., B. Al-Sakere, B. Rubinsky, and L. M. Mir. In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys. Med. Biol. 54:5949–5963, 2009.

    Article  PubMed  Google Scholar 

  21. Ivorra, A., and B. Rubinsky. In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry 70:287–295, 2007.

    Article  PubMed  CAS  Google Scholar 

  22. Jiang, J., R. Goel, M. A. Iftekhar, R. Visaria, J. D. Belcher, G. M. Vercellotti, and J. C. Bischof. Tumor necrosis factor-alpha-induced accentuation in cryoinjury: mechanisms in vitro and in vivo. Mol. Cancer Ther. 7:2547–2555, 2008.

    Article  PubMed  CAS  Google Scholar 

  23. Jiang, J., R. Goel, S. Schmechel, G. Vercellotti, C. Forster, and J. Bischof. Pre-conditioning cryosurgery: cellular and molecular mechanisms and dynamics of TNF-α enhanced cryotherapy in an in vivo prostate cancer model system. Cryobiology 61:280–288, 2010.

    Article  PubMed  CAS  Google Scholar 

  24. Kingham, T. P., A. M. Karkar, M. I. D’Angelica, P. J. Allen, R. P. DeMatteo, G. I. Getrajdman, C. T. Sofocleous, S. B. Solomon, W. R. Jarnagin, and Y. Fong. Ablation of perivascular hepatic malignant tumors with irreversible electroporation. J. Am. Coll. Surg. 215:379–387, 2012.

    Article  PubMed  Google Scholar 

  25. Markelc, B., E. Bellard, G. Sersa, S. Pelofy, J. Teissie, A. Coer, M. Golzio, and M. Cemazar. In vivo molecular imaging and histological analysis of changes induced by electric pulses used for plasmid DNA electrotransfer to the skin: a study in a dorsal window chamber in mice. J. Membr. Biol. 245:545–554, 2012.

    Article  PubMed  CAS  Google Scholar 

  26. Miklavcic, D., D. Semrov, H. Mekid, and L. M. Mir. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim. Biophys. Acta 1523:73–83, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Miller, L., J. Leor, and B. Rubinsky. Cancer cells ablation with irreversible electroporation. Technol. Cancer Res. Treat. 4:699–705, 2005.

    PubMed  Google Scholar 

  28. Moldovan, D., D. Pinisetty, and R. V. Devireddy. Molecular dynamics simulation of pore growth in lipid bilayer membranes in the presence of edge-active agents. Appl. Phys. Lett. 91:204104, 2007.

    Article  Google Scholar 

  29. Neal, 2nd, R. E., P. A. Garcia, J. L. Robertson, and R. V. Davalos. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans. Biomed. Eng. 59:1076–1085, 2012.

    Article  PubMed  Google Scholar 

  30. Neal, R. E., J. H. Rossmeisl, P. A. Garcia, O. I. Lanz, N. Henao-Guerrero, and R. V. Davalos. Successful treatment of a large soft tissue sarcoma with irreversible electroporation. J. Clin. Oncol. 29:e372–e377, 2011.

    Article  PubMed  Google Scholar 

  31. Neal, 2nd, R. E., R. Singh, H. C. Hatcher, N. D. Kock, S. V. Torti, and R. V. Davalos. Treatment of breast cancer through the application of irreversible electroporation using a novel minimally invasive single needle electrode. Breast Cancer Res. Treat. 123:295–301, 2010.

    Article  PubMed  Google Scholar 

  32. Onik, G., P. Mikus, and B. Rubinsky. Irreversible electroporation: implications for prostate ablation. Technol. Cancer Res. Treat. 6:295–300, 2007.

    PubMed  Google Scholar 

  33. Pavselj, N., Z. Bregar, D. Cukjati, D. Batiuskaite, L. M. Mir, and D. Miklavcic. The course of tissue permeabilization studied on a mathematical model of a subcutaneous tumor in small animals. IEEE Trans. Biomed. Eng. 52:1373–1381, 2005.

    Article  PubMed  Google Scholar 

  34. Pech, M., A. Janitzky, J. J. Wendler, C. Strang, S. Blaschke, O. Dudeck, J. Ricke, and U. B. Liehr. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc. Intervent. Radiol. 34:132–138, 2011.

    Article  PubMed  Google Scholar 

  35. Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6:37–48, 2007.

    PubMed  Google Scholar 

  36. Rydeen, C. Hyperthermic Injury of Prostate Cancer Cells. Minneapolis: University of Minnesota, 2012.

  37. Sano, M. B., R. E. Neal, 2nd, P. A. Garcia, D. Gerber, J. Robertson, and R. V. Davalos. Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed. Eng. Online 9:83, 2010.

    Article  PubMed  Google Scholar 

  38. Sapareto, S. A., L. E. Hopwood, W. C. Dewey, M. R. Raju, and J. W. Gray. Effects of hyperthermia on survival and progression of Chinese hamster ovary cells. Cancer Res. 38:393–400, 1978.

    PubMed  CAS  Google Scholar 

  39. Satterthwaite, F. E. An approximate distribution of estimates of variance components. Biometrics Bull. 2:110–114, 1946.

    Article  CAS  Google Scholar 

  40. Sel, D., D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, and D. Miklavcic. Sequential finite element model of tissue electropermeabilization. IEEE Trans. Biomed. Eng. 52:816–827, 2005.

    Article  PubMed  Google Scholar 

  41. Shafiee, H., P. A. Garcia, and R. V. Davalos. A preliminary study to delineate irreversible electroporation from thermal damage using the arrhenius equation. J. Biomech. Eng. 131:074509, 2009.

    Article  PubMed  Google Scholar 

  42. Shenoi, M. Nanoparticle Preconditioning for Enhanced Thermal Therapies in Cancer. Ph.D Dissertation. Minneapolis: University of Minnesota, 2011.

    Google Scholar 

  43. Thomson, K. R., W. Cheung, S. J. Ellis, D. Federman, H. Kavnoudias, D. Loader-Oliver, S. Roberts, P. Evans, C. Ball, and A. Haydon. Investigation of the safety of irreversible electroporation in humans. J. Vasc. Interv. Radiol. 22:611–621, 2011.

    Article  PubMed  Google Scholar 

  44. Tracy, C. R., W. Kabbani, and J. A. Cadeddu. Irreversible electroporation (IRE): a novel method for renal tissue ablation. BJU Int. 107:1982–1987, 2011.

    Article  PubMed  Google Scholar 

  45. Weaver, J. Electroporation of cells and tissues. IEEE Trans. Plasma Sci. 28:24–33, 2000.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Ethicon Endo-Surgery Inc. JCB was supported by a McKnight Distinguished Professorship and the Carl and Janet Kuhrmeyer Chair of Mechanical Engineering from the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Bischof.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Z., Jiang, J., Long, G. et al. Irreversible Electroporation: An In Vivo Study with Dorsal Skin Fold Chamber. Ann Biomed Eng 41, 619–629 (2013). https://doi.org/10.1007/s10439-012-0686-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0686-1

Keywords

Navigation