Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Stylistic scene enhancement GAN: mixed stylistic enhancement generation for 3D indoor scenes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present stylistic scene enhancement GAN, SSE-GAN, a conditional Wasserstein GAN-based approach to automatic generation of mixed stylistic enhancements for 3D indoor scenes. An enhancement indicates factors that can influence the style of an indoor scene such as furniture colors and occurrence of small objects. To facilitate network training, we propose a novel enhancement feature encoding method, which represents an enhancement by a multi-one-hot vector, and effectively accommodates different enhancement factors. A Gumbel-Softmax module is introduced in the generator network to enable the generation of high fidelity enhancement features that can better confuse the discriminator. Experiments show that our approach is superior to the other baseline methods and successfully models the relationship between the style distribution and scene enhancements. Thus, although only trained with a dataset of room images in single styles, the trained generator can generate mixed stylistic enhancements by specifying multiple styles as the condition. Our approach is the first to apply a Gumbel-Softmax module in conditional Wasserstein GANs, as well as the first to explore the application of GAN-based models in the scene enhancement field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Trimble 3D warehouse (2019). URL https://3dwarehouse.sketchup.com/. Accessed 15 Sept 2018

  2. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. arXiv preprint arXiv:1611.08974 (2016)

  3. Wang, K., Savva, M., Chang, A.X., Ritchie, D.: Deep convolutional priors for indoor scene synthesis. ACM Trans. Graph. (TOG) 37(4), 70:1–70:14 (2018)

    Google Scholar 

  4. Chen, G., Li, G., Nie, Y., Xian, C., Mao, A.: Stylistic indoor colour design via Bayesian network. Comput. Graph. 60, 34–45 (2016)

    Article  Google Scholar 

  5. Chen, K., Xu, K., Yu, Y., Wang, T.Y., Hu, S.M.: Magic decorator: automatic material suggestion for indoor digital scenes. ACM Trans. Graph. (TOG) 34(6), 232:1–232:11 (2015)

    Google Scholar 

  6. Zhang, S., Han, Z., Martin, R.R., Zhang, H.: Semantic 3D indoor scene enhancement using guide words. Vis. Comput. 33(6–8), 925–935 (2017)

    Article  Google Scholar 

  7. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  8. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016)

  9. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: NIPS, 5767–5777 (2017)

  10. Chen, X., Li, J., Li, Q., Gao, B., Zou, D., Zhao, Q.: Image2scene: transforming style of 3D room. In: Proceedings of the ACM International Conference on Multimedia, 321–330 (2015)

  11. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS, 2672–2680 (2014)

  12. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  13. Chen, Y., Lai, Y.K., Liu, Y.J.: CartoonGAN: generative adversarial networks for photo cartoonization. In: IEEE CVPR, 9465–9474 (2018)

  14. Wu, H., Zheng, S., Zhang, J., Huang, K.: GP-GAN: Towards realistic high-resolution image blending. arXiv preprint arXiv:1703.07195 (2017)

  15. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: NIPS, pp. 82–90 (2016)

  16. Liu, J., Yu, F., Funkhouser, T.: Interactive 3D modeling with a generative adversarial network. In: International Conference on 3D Vision (3DV), 126–134. IEEE (2017)

  17. Chen, K., Choy, C.B., Savva, M., Chang, A.X., Funkhouser, T., Savarese, S.: Text2Shape: Generating shapes from natural language by learning joint embeddings. arXiv preprint arXiv:1803.08495 (2018)

  18. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint arXiv:1701.07875 (2017)

  19. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: IEEE CVPR, 5967–5976 (2017)

  20. Donahue, C., McAuley, J., Puckette, M.: Adversarial audio synthesis. arXiv preprint arXiv:1802.04208 (2018)

  21. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  22. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)

  23. Camino, R., Hammerschmidt, C., State, R.: Generating multi-categorical samples with generative adversarial networks. arXiv preprint arXiv:1807.01202 (2018)

  24. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  25. Gumbel, E.J.: Statistical theory of extreme values and some practical applications. NBS Applied Mathematics Series 33, (1954)

  26. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980 (2014)

  27. Xu, Q., Huang, G., Yuan, Y., Guo, C., Sun, Y., Wu, F., Weinberger, K.: An empirical study on evaluation metrics of generative adversarial networks. arXiv preprint arXiv:1806.07755 (2018)

  28. Lopez-Paz, D., Oquab, M.: Revisiting classifier two-sample tests. arXiv preprint arXiv:1610.06545 (2016)

  29. Bounliphone, W., Belilovsky, E., Blaschko, M.B., Antonoglou, I., Gretton, A.: A test of relative similarity for model selection in generative models. arXiv preprint arXiv:1511.04581 (2015)

  30. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3D model retrieval. Comput. Graph. Forum 22(3), 223–232 (2003)

    Article  Google Scholar 

  32. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)

    Article  Google Scholar 

  33. Zhang, Z., Yang, Z., Ma, C., Luo, L., Huth, A., Vouga, E., Huang, Q.: Deep generative modeling for scene synthesis via hybrid representations. arXiv preprint arXiv:1808.02084 (2018)

  34. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61373070), NSF (1813583) and Tsinghua-Kuaishou Institute of Future Media Data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Han, Z., Lai, YK. et al. Stylistic scene enhancement GAN: mixed stylistic enhancement generation for 3D indoor scenes. Vis Comput 35, 1157–1169 (2019). https://doi.org/10.1007/s00371-019-01691-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01691-w

Keywords

Navigation