Abstract
The assignment of labels to data instances is a fundamental prerequisite for many machine learning tasks. Moreover, labeling is a frequently applied process in visual interactive analysis approaches and visual analytics. However, the strategies for creating labels usually differ between these two fields. This raises the question whether synergies between the different approaches can be attained. In this paper, we study the process of labeling data instances with the user in the loop, from both the machine learning and visual interactive perspective. Based on a review of differences and commonalities, we propose the “visual interactive labeling” (VIAL) process that unifies both approaches. We describe the six major steps of the process and discuss their specific challenges. Additionally, we present two heterogeneous usage scenarios from the novel VIAL perspective, one on metric distance learning and one on object detection in videos. Finally, we discuss general challenges to VIAL and point out necessary work for the realization of future VIAL approaches.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Attenberg, J., Provost, F.: Inactive learning? Difficulties employing active learning in practice. SIGKDD Explor. Newsl. 12(2), 36–41 (2011). https://doi.org/10.1145/1964897.1964906
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)
Bernard, J., Daberkow, D., Fellner, D., Fischer, K., Koepler, O., Kohlhammer, J., Runnwerth, M., Ruppert, T., Schreck, T., Sens, I.: Visinfo: a digital library system for time series research data based on exploratory search—a user-centered design approach. Int. J. Digit. Libr. (IJoDL) 1, 37–59 (2015). https://doi.org/10.1007/s00799-014-0134-y
Bernard, J., Dobermann, E., Vögele, A., Krüger, B., Kohlhammer, J., Fellner, D.: Visual-interactive semi-supervised labeling of human motion capture data. In: Visualization and Data Analysis (VDA) (2017). https://doi.org/10.2352/ISSN.2470-1173.2017.1.VDA-387
Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012)
Bernard, J.: Exploratory Search in Time-Oriented Primary Data. Dissertation, Ph.D. Technische Universität Darmstadt, Graphisch-Interaktive Systeme (GRIS), Darmstadt (2015). http://tuprints.ulb.tu-darmstadt.de/5173/
Bellet, A., Habrard, A., Sebban M.: A Survey on Metric Learning for Feature Vectors and Structured Data. CoRR arXiv:1306.6709 (2013)
Bernard, J., Hutter, M., Zeppelzauer, M., Fellner, D., Sedlmair, M.: Comparing visual-interactive labeling with active learning: an experimental study. IEEE Trans. Vis. Comput. Graph. (TVCG) (2017). https://doi.org/10.1109/TVCG.2017.2744818
Buhrmester, M., Kwang, T., Gosling, S.D.: Amazon’s mechanical turk: a new source of inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 6(1), 3–5 (2011)
Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., Ertl, T.: State-of-the-art of visualization for eye tracking data. In: EuroVis (STAR) (2014), Eurograph. https://doi.org/10.2312/eurovisstar.20141173
Behrisch, M., Korkmaz, F., Shao, L., Schreck, T.: Feedback-driven interactive exploration of large multidimensional data supported by visual classifier. In: IEEE Visual Analytics Science and Technology (VAST), pp. 43–52 (2014)
Brown, E.T., Liu, J., Brodley, C.E., Chang, R.: Dis-function: Learning distance functions interactively. In: IEEE Visual Analytics Science and Technology (VAST), pp. 83–92. IEEE (2012)
Bernard, J., Ruppert, T., Goroll, O., May, T., Kohlhammer, J.: Visual-interactive preprocessing of time series data. In: SIGRAD, Swedish Chapter of Eurographics, vol. 81 of Linköping Electronic Conference Proceedings, Linköping University Electronic Press, pp. 39–48 (2012). http://www.ep.liu.se/ecp_article/index.en.aspx?issue=081;article=006
Bernard, J., Ruppert, T., Scherer, M., Schreck, T., Kohlhammer, J.: Guided discovery of interesting relationships between time series clusters and metadata properties. In: Knowledge Management and Knowledge Technologies (i-KNOW), pp. 22:1–22:8. ACM (2012). https://doi.org/10.1145/2362456.2362485
Bernard, J., Ritter, C., Sessler, D., Zeppelzauer, M., Kohlhammer, J., Fellner, D.: Visual-interactive similarity search for complex objects by example of soccer player analysis. In: IVAPP, VISIGRAPP, pp. 75–87 (2017). https://doi.org/10.5220/0006116400750087
Bernard, J., Sessler, D., Berisch, M., Hutter, M., Schreck, T., Kohlhammer, J.: Towards a user-defined visual-interactive definition of similarity functions for mixed data. In: IEEE Visual Analytics Science and Technology (Poster Paper) (2014). https://doi.org/10.1109/VAST.2014.7042503
Bernard, J., Sessler, D., Bannach, A., May, T., Kohlhammer, J.: A visual active learning system for the assessment of patient well-being in prostate cancer research. In: VIS Workshop on Visual Analytics in Healthcare, pp. 1–8. ACM (2015). https://doi.org/10.1145/2836034.2836035
Bernard, J., Sessler, D., Ruppert, T., Davey, J., Kuijper, A., Kohlhammer, J.: User-based visual-interactive similarity definition for mixed data objects-concept and first implementation. J. WSCG 22, 329–338 (2014)
Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Longman (1999)
Bernard, J., Zeppelzauer, M., Sedlmair, M., Aigner, W.: A unified process for visual-interactive labeling. In: Sedlmair, M., Tominski, C. (eds.) EuroVis Workshop on Visual Analytics (EuroVA), Eurographics (2017). https://doi.org/10.2312/eurova.20171123
Chen, M., Golan, A.: What may visualization processes optimize? IEEE Trans. Vis. Comput. Graph. (TVCG) 22(12), 2619–2632 (2016). https://doi.org/10.1109/TVCG.2015.2513410
Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)
Choo, J., Park, H.: Customizing computational methods for visual analytics with big data. IEEE Comput. Graph. Appl. (CG&A) 33(4), 22–28 (2013)
Craik, K. (ed.): The Nature of Explanation. Cambridge University Press, Cambridge (1943)
Card, S.K., Robertson, G.G., Mackinlay, J.D.: The information visualizer, an information workspace. In: SIGCHI Conference on Human Factors in Computing Systems (CHI). ACM, pp. 181–186 (1991). https://doi.org/10.1145/108844.108874
Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. Adaptive Computation and Machine Learning Series. The MIT Press, Cambridge, MA (2006)
Dagli, C.K., Rajaram, S., Huang, T.S.: Leveraging active learning for relevance feedback using an information theoretic diversity measure. In: Conference on Image and Video Retrieval, pp. 123–132. Springer, Berlin (2006). https://doi.org/10.1007/11788034_13
Elmqvist, N., Fekete, J.-D.: Hierarchical aggregation for information visualization: overview, techniques, and design guidelines. IEEE Trans. Vis. Comput. Graph. (TVCG) 16(3), 439–454 (2010). https://doi.org/10.1109/TVCG.2009.84
Endert, A., Fiaux, P., North, C.: Semantic interaction for sensemaking: inferring analytical reasoning for model steering. IEEE Trans. Vis. Comput. Graph. 18(12), 2879–2888 (2012). https://doi.org/10.1109/TVCG.2012.260
Endert, A., Fiaux, P., North, C.: Semantic interaction for visual text analytics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, pp. 473–482. ACM, New York (2012). https://doi.org/10.1145/2207676.2207741
Endert, A., Han, C., Maiti, D., House, L., Leman, S., North, C.: Observation-level interaction with statistical models for visual analytics. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 121–130 (2011). https://doi.org/10.1109/VAST.2011.6102449
Endert, A., Ribarsky, W., Turkay, C., Wong, B.W., Nabney, I., Blanco, I.D., Rossi, F.: The state of the art in integrating machine learning into visual analytics. In: Computer Graphics Forum (CGF) (2017). https://doi.org/10.1111/cgf.13092
Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual comparison for information visualization. Inf. Vis. 10(4), 289–309 (2011). https://doi.org/10.1177/1473871611416549
Grabner, H., Bischof, H.: On-line boosting and vision. In: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1, pp. 260–267. IEEE (2006)
Gschwandtner, T., Gärtner, J., Aigner, W., Miksch, S.: A Taxonomy of Dirty Time-Oriented Data, pp. 58–72. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-32498-7_5
Gleicher, M.: A framework for considering comprehensibility in modeling. Big Data 4(2), 75–88 (2016). https://doi.org/10.1089/big.2016.0007
Hoi, S.C., Jin, R., Lyu, M.R.: Large-scale text categorization by batch mode active learning. In: World Wide Web. ACM, pp. 633–642 (2006). https://doi.org/10.1145/1135777.1135870.3
Heimerl, F., Koch, S., Bosch, H., Ertl, T.: Visual classifier training for text document retrieval. IEEE Trans. Vis. Comput. Graph. (TVCG) 18(12), 2839–2848 (2012)
Höferlin, B., Netzel, R., Höferlin, M., Weiskopf, D., Heidemann, G.: Inter-active learning of ad-hoc classifiers for video visual analytics. In: IEEE Visual Analytics Science and Technology (VAST). IEEE, pp. 23–32 (2012). https://doi.org/10.1109/VAST.2012.6400492
Janetzko, H., Sacha, D., Stein, M., Schreck, T., Keim, D.A., Deussen, O.: Feature-driven visual analytics of soccer data. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 13–22 (2014). https://doi.org/10.1109/VAST.2014.7042477
Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual Analytics: Definition, Process, and Challenges, pp. 154–175. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-70956-5_7
Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham, F., Riche, N.H., Weaver, C., Lee, B., Brodbeck, D., Buono, P.: Research directions in data wrangling: visualizations and transformations for usable and credible data. Inf. Vis. 10(4), 271–288 (2011). https://doi.org/10.1177/1473871611415994
Karpinski, M., Macintyre, A.: Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks. J. Comput. Syst. Sci. 54(1), 169–176 (1997). https://doi.org/10.1006/jcss.1997.1477
Krause, J., Perer, A., Bertini, E.: Infuse: Interactive feature selection for predictive modeling of high dimensional data. IEEE Trans. Vis. Comput. Graph. (TVCG) 20(12), 1614–1623 (2014). https://doi.org/10.1109/TVCG.2014.2346482
Lewis, J.M., Ackerman, M., de Sa, V.R.: Human cluster evaluation and formal quality measures: a comparative study. In: Annual Meeting of the Cognitive Science Society (CogSci), pp. 1870–1875 (2012)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: a review and comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2017). https://doi.org/10.1016/j.neucom.2017.06.084
Liu, T.-Y.: Learning to rank for information retrieval. Found. Trends Inf. Retr. 3(3), 225–331 (2009). https://doi.org/10.1561/1500000016
Liu, Z., Stasko, J.: Mental models, visual reasoning and interaction in information visualization: a top-down perspective. IEEE Trans. Vis. Comput. Graph. 16(6), 999–1008 (2010). https://doi.org/10.1109/TVCG.2010.177
Mamitsuka, N.A.H.: Query learning strategies using boosting and bagging. In: Shavlik, J.W. (ed.) International Conference on Machine Learning (ICML), vol. 1, pp. 1–9. Morgan Kaufmann, Los Altos (1998)
Möhrmann, J., Bernstein, S., Schlegel, T., Werner, G., Heidemann, G.: Improving the usability of interfaces for the interactive semi-automatic labeling of large image data sets. In: Jacko, J.A. (ed.) Human-Computer Interaction. Design and Development Approaches, pp. 618–627. Springer, Berlin (2011)
Mamani, G.M.H., Fatore, F.M., Nonato, L.G., Paulovich, F.V.: User-driven feature space transformation. Comput. Graph. Forum (CGF) 32(3), 291–299 (2013). https://doi.org/10.1111/cgf.12116
Mühlbacher, T., Piringer, H.: A partition-based framework for building and validating regression models. IEEE Trans. Vis. Comput. Graph. (TVCG) 19(12), 1962–1971 (2013). https://doi.org/10.1109/TVCG.2013.125
Mühlbacher, T., Piringer, H., Gratzl, S., Sedlmair, M., Streit, M.: Opening the black box: strategies for increased user involvement in existing algorithm implementations. IEEE Trans. Vis. Comput. Graph. 20(12), 1643–1652 (2014)
Mitrović, D., Zeppelzauer, M., Breiteneder, C.: Features for content-based audio retrieval. Adv. Comput. 78, 71–150 (2010)
Norman, D.A.: The Design of Everyday Things, reprint, paperback edn. Basic Books, New York (2002)
Olsson, F.: A Literature Survey of Active Machine Learning in the Context of Natural Language Processing, Technical report. Swedish Institute of Computer Science (2009)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
Qi, G.-J., Hua, X.-S., Rui, Y., Tang, J., Zhang, H.-J.: Two-dimensional multilabel active learning with an efficient online adaptation model for image classification. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 31(10), 1880–1897 (2009). https://doi.org/10.1109/TPAMI.2008.218
Rauber, P.E., Fadel, S.G., Falcao, A.X., Telea, A.C.: Visualizing the hidden activity of artificial neural networks. IEEE Trans. Vis. Comput. Graph. 23(1), 101–110 (2017)
Riek, L.D., OŠconnor, M.F., Robinson, P.: Guess what? a game for affective annotation of video using crowd sourcing. In: International Conference on Affective Computing and Intelligent Interaction, pp. 277–285. Springer, Berlin (2011)
Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1), 157–173 (2008)
Sedlmair, M., Aupetit, M.: Data-driven evaluation of visual quality measures. Comput. Graph. Forum (CGF) 34(3), 201–210 (2015). https://doi.org/10.1111/cgf.12632
Shurkhovetskyy, G., Andrienko, N., Andrienko, G., Fuchs, G.: Data abstraction for visualizing large time series. Comput. Graph. Forum (CGF) (2017). https://doi.org/10.1111/cgf.13237
Seifert, C., Aamir, A., Balagopalan, A., Jain, D., Sharma, A., Grottel, S., Gumhold, S.: Visualizations of Deep Neural Networks in Computer Vision: A Survey, pp. 123–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54024-5_6
Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. Read. Inf. Retr. 24, 5 (1997). https://doi.org/10.1002/(SICI)1097-4571(199006)41:4%3c288::AID-ASI8%3e3.0.CO;2-H
Sessler, D., Bernard, J., Kuijper, A., Kohlhammer, J.: Adopting Mental Similarity Notions of Categorical Data Objects to Algorithmic Similarity functions. (2014). Poster Paper. http://www.vmv2014.gcc.tu-darmstadt.de/sites/program.html
Schreck, T., Bernard, J., Von Landesberger, T., Kohlhammer, J.: Visual cluster analysis of trajectory data with interactive kohonen maps. Inf. Vis. 8(1), 14–29 (2009). https://doi.org/10.1057/ivs.2008.29
Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Empirical Methods in Natural Language Processing, Computational Linguistics, pp. 1070–1079 (2008)
Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: Advances in Neural Information Processing Systems, pp. 1289–1296 (2008)
Settles, B.: Active Learning Literature Survey, Technical Report 1648. University of Wisconsin–Madison (2009)
Settles, B.: Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), Computational Linguistics, pp. 1467–1478 (2011)
Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)
Seifert, C., Granitzer, M.: User-based active learning. In: IEEE International Conference on Data Mining Workshops, pp. 418–425 (2010). https://doi.org/10.1109/ICDMW.2010.181
Stasko, J., Görg, C., Liu, Z.: Jigsaw: supporting investigative analysis through interactive visualization. Inf. Vis. 7(2), 118–132 (2008). https://doi.org/10.1145/1466620.1466622
Sedlmair, M., Heinzl, C., Bruckner, S., Piringer, H., Möller, T.: Visual parameter space analysis: a conceptual framework. IEEE Trans. Vis. Comput. Graph. (TVCG) 20(12), 2161–2170 (2014). https://doi.org/10.1109/TVCG.2014.2346321
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Sedlmair, M., Meyer, M., Munzner, T.: Design study methodology: reflections from the trenches and the stacks. IEEE Trans. Vis. Comput. Graph (TVCG) 18(12), 2431–2440 (2012). https://doi.org/10.1109/TVCG.2012.213
Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Workshop on Computational Learning Theory (COLT), pp. 287–294. ACM, New York (1992). https://doi.org/10.1145/130385.130417
Stolper, C.D., Perer, A., Gotz, D.: Progressive visual analytics: user-driven visual exploration of in-progress analytics. IEEE Trans. Vis. Comput. Graph. 20(12), 1653–1662 (2014)
Sarkar, A., Spott, M., Blackwell, A.F., Jamnik, M.: Visual discovery and model-driven explanation of time series patterns. In: Visual Languages and Human-Centric Computing (VL/HCC). IEEE, pp. 78–86 (2016). https://doi.org/10.1109/VLHCC.2016.7739668
Seebacher, D., Stein, M., Janetzko, H., Keim, D.A.: Patent retrieval: a multi-modal visual analytics approach. In: EuroVis Workshop on Visual Analytics (EuroVA), Eurographics, pp. 013–017 (2016)
Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G.P., Keim, D.A.: Knowledge generation model for visual analytics. IEEE Trans. Vis. Comput. Graph. (TVCG) 20(12), 1604–1613 (2014). https://doi.org/10.1109/TVCG.2014.2346481
Sacha, D., Sedlmair, M., Zhang, L., Lee, J.A., Weiskopf, D., North, S.C., Keim, D.A.: Human-centered machine learning through interactive visualization: review and open challenges. In: Artificial Neural Networks, Computational Intelligence and Machine Learning (2016)
Sacha, D., Sedlmair, M., Zhang, L., Lee, J.A., Peltonen, J., Weiskopf, D., North, S.C., Keim, D.A.: What you see is what you can change: human-centered machine learning by interactive visualization. Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2017.01.105. ISSN = 0925-2312
Sacha, D., Zhang, L., Sedlmair, M., Lee, J.A., Peltonen, J., Weiskopf, D., North, S.C., Keim, D.A.: Visual interaction with dimensionality reduction: a structured literature analysis. IEEE Trans. Vis. Comput. Graph. (TVCG) 23(01), 241–250 (2016). https://doi.org/10.1109/TVCG.2016.2598495
Turkay, C., Kaya, E., Balcisoy, S., Hauser, H.: Designing progressive and interactive analytics processes for high-dimensional data analysis. IEEE Trans. Vis. Comput. Graph. (TVCG) 23(1), 131–140 (2017)
Tuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J.: A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 5(3), 606–617 (2011)
Von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: Conference on Human Factors in Computing Systems (SIGCHI), pp. 319–326. ACM (2004)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (2013)
van der Corput, P., van Wijk, J.J.: Comparing personal image collections with picturevis. Comput. Graph. Forum (CGF) 36(3), 295–304 (2017). https://doi.org/10.1111/cgf.13188
van den Elzen, S., van Wijk, J.J.: Baobabview: interactive construction and analysis of decision trees. In: IEEE Visual Analytics Science and Technology (VAST), pp. 151–160 (2011). https://doi.org/10.1109/VAST.2011.6102453
Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)
Vendrig, J., Patras, I., Snoek, C., Worring, M., den Hartog, J., Raaijmakers, S., van Rest, J., van Leeuwen, D.A.: Trec feature extraction by active learning. In: TREC (2002)
Visentini, I., Snidaro, L., Foresti, G.L.: On-line boosted cascade for object detection. In: Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, pp. 1–4. IEEE (2008)
van Wijk, J.J.: The value of visualization. In: VIS 05. IEEE Visualization, 2005, pp. 79–86 (2005). https://doi.org/10.1109/VISUAL.2005.1532781
Wall, E., Das, S., Chawla, R., Kalidindi, B., Brown, E.T., Endert, A.: Podium: ranking data using mixed-initiative visual analytics. IEEE Trans. Vis. Comput. Graph. 24(1), 288–297 (2018)
Wang, M., Hua, X.-S.: Active learning in multimedia annotation and retrieval: a survey. CM Trans. Intell. Syst. Technol. 2(2), 10:1–10:21 (2011). https://doi.org/10.1145/1899412.1899414
Wu, Y., Kozintsev, I., Bouguet, J.-Y., Dulong, C.: Sampling strategies for active learning in personal photo retrieval. In: IEEE International Conference on Multimedia and Expo. IEEE, pp. 529–532 (2006). https://doi.org/10.1109/ICME.2006.262442
Wenskovitch, J., North, C.: Observation-level interaction with clustering and dimension reduction algorithms. In: Workshop on Human-In-the-Loop Data Analytics (HILDA). ACM, pp. 14:1–14:6 (2017). https://doi.org/10.1145/3077257.3077259
Wongsuphasawat, K., Smilkov, D., Wexler, J., Wilson, J., Mané, D., Fritz, D., Krishnan, D., Viégas, F.B., Wattenberg, M.: Visualizing dataflow graphs of deep learning models in tensorflow. IEEE Trans. Vis. Comput. Graph. 24(1), 1–12 (2018). https://doi.org/10.1109/TVCG.2017.2744878
Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 3320–3328. Curran Associates Inc, New York (2014)
Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding Neural Networks Through Deep Visualization (2015). arXiv preprint arXiv:1506.06579
Yang, L., Jin, R.: Distance metric learning: a comprehensive survey. Mich. State Univ. 2, 2 (2006)
Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Zhu, Q., Keogh, E.J.: Using captchas to index cultural artifacts. In: International Symposium on Advances in Intelligent Data Analysis IX, pp. 245–257. Springer, Berlin (2010)
Acknowledgements
This work is an extended version of a previous EuroVA paper [20] entitled “ A Unified Process for Visual Interactive Labeling.” This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Project No. I 2850, Lead Agency Verfahren (DACH) “Visual Segmentation and Labeling of Multivariate Time Series (VISSECT),” the Austrian Research Promotion Agency (FFG), Project Nos. 7179681, 7189193, the Austrian Ministry for Transport, Innovation and Technology under the initiative “ICT of the future” via the project “VALiD” (Project No. 845598), the Austrian Research Fund (FWF) via the projects “KAVA-Time” (Project No. P25489-N23), and “VisOnFire” (Project No. P27975-NBL), as well as by the Lower Austrian Research and Education Company and the Provincial Government of Lower Austria (NFB), Department of Science and Research via the project “IntelliGait” (Project No. LSC14-005).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bernard, J., Zeppelzauer, M., Sedlmair, M. et al. VIAL: a unified process for visual interactive labeling. Vis Comput 34, 1189–1207 (2018). https://doi.org/10.1007/s00371-018-1500-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-018-1500-3