Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

VIAL: a unified process for visual interactive labeling

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The assignment of labels to data instances is a fundamental prerequisite for many machine learning tasks. Moreover, labeling is a frequently applied process in visual interactive analysis approaches and visual analytics. However, the strategies for creating labels usually differ between these two fields. This raises the question whether synergies between the different approaches can be attained. In this paper, we study the process of labeling data instances with the user in the loop, from both the machine learning and visual interactive perspective. Based on a review of differences and commonalities, we propose the “visual interactive labeling” (VIAL) process that unifies both approaches. We describe the six major steps of the process and discuss their specific challenges. Additionally, we present two heterogeneous usage scenarios from the novel VIAL perspective, one on metric distance learning and one on object detection in videos. Finally, we discuss general challenges to VIAL and point out necessary work for the realization of future VIAL approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Attenberg, J., Provost, F.: Inactive learning? Difficulties employing active learning in practice. SIGKDD Explor. Newsl. 12(2), 36–41 (2011). https://doi.org/10.1145/1964897.1964906

    Article  Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Bernard, J., Daberkow, D., Fellner, D., Fischer, K., Koepler, O., Kohlhammer, J., Runnwerth, M., Ruppert, T., Schreck, T., Sens, I.: Visinfo: a digital library system for time series research data based on exploratory search—a user-centered design approach. Int. J. Digit. Libr. (IJoDL) 1, 37–59 (2015). https://doi.org/10.1007/s00799-014-0134-y

    Article  Google Scholar 

  4. Bernard, J., Dobermann, E., Vögele, A., Krüger, B., Kohlhammer, J., Fellner, D.: Visual-interactive semi-supervised labeling of human motion capture data. In: Visualization and Data Analysis (VDA) (2017). https://doi.org/10.2352/ISSN.2470-1173.2017.1.VDA-387

  5. Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. In: ICML Workshop on Unsupervised and Transfer Learning, pp. 17–36 (2012)

  6. Bernard, J.: Exploratory Search in Time-Oriented Primary Data. Dissertation, Ph.D. Technische Universität Darmstadt, Graphisch-Interaktive Systeme (GRIS), Darmstadt (2015). http://tuprints.ulb.tu-darmstadt.de/5173/

  7. Bellet, A., Habrard, A., Sebban M.: A Survey on Metric Learning for Feature Vectors and Structured Data. CoRR arXiv:1306.6709 (2013)

  8. Bernard, J., Hutter, M., Zeppelzauer, M., Fellner, D., Sedlmair, M.: Comparing visual-interactive labeling with active learning: an experimental study. IEEE Trans. Vis. Comput. Graph. (TVCG) (2017). https://doi.org/10.1109/TVCG.2017.2744818

    Google Scholar 

  9. Buhrmester, M., Kwang, T., Gosling, S.D.: Amazon’s mechanical turk: a new source of inexpensive, yet high-quality, data? Perspect. Psychol. Sci. 6(1), 3–5 (2011)

    Article  Google Scholar 

  10. Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., Ertl, T.: State-of-the-art of visualization for eye tracking data. In: EuroVis (STAR) (2014), Eurograph. https://doi.org/10.2312/eurovisstar.20141173

  11. Behrisch, M., Korkmaz, F., Shao, L., Schreck, T.: Feedback-driven interactive exploration of large multidimensional data supported by visual classifier. In: IEEE Visual Analytics Science and Technology (VAST), pp. 43–52 (2014)

  12. Brown, E.T., Liu, J., Brodley, C.E., Chang, R.: Dis-function: Learning distance functions interactively. In: IEEE Visual Analytics Science and Technology (VAST), pp. 83–92. IEEE (2012)

  13. Bernard, J., Ruppert, T., Goroll, O., May, T., Kohlhammer, J.: Visual-interactive preprocessing of time series data. In: SIGRAD, Swedish Chapter of Eurographics, vol. 81 of Linköping Electronic Conference Proceedings, Linköping University Electronic Press, pp. 39–48 (2012). http://www.ep.liu.se/ecp_article/index.en.aspx?issue=081;article=006

  14. Bernard, J., Ruppert, T., Scherer, M., Schreck, T., Kohlhammer, J.: Guided discovery of interesting relationships between time series clusters and metadata properties. In: Knowledge Management and Knowledge Technologies (i-KNOW), pp. 22:1–22:8. ACM (2012). https://doi.org/10.1145/2362456.2362485

  15. Bernard, J., Ritter, C., Sessler, D., Zeppelzauer, M., Kohlhammer, J., Fellner, D.: Visual-interactive similarity search for complex objects by example of soccer player analysis. In: IVAPP, VISIGRAPP, pp. 75–87 (2017). https://doi.org/10.5220/0006116400750087

  16. Bernard, J., Sessler, D., Berisch, M., Hutter, M., Schreck, T., Kohlhammer, J.: Towards a user-defined visual-interactive definition of similarity functions for mixed data. In: IEEE Visual Analytics Science and Technology (Poster Paper) (2014). https://doi.org/10.1109/VAST.2014.7042503

  17. Bernard, J., Sessler, D., Bannach, A., May, T., Kohlhammer, J.: A visual active learning system for the assessment of patient well-being in prostate cancer research. In: VIS Workshop on Visual Analytics in Healthcare, pp. 1–8. ACM (2015). https://doi.org/10.1145/2836034.2836035

  18. Bernard, J., Sessler, D., Ruppert, T., Davey, J., Kuijper, A., Kohlhammer, J.: User-based visual-interactive similarity definition for mixed data objects-concept and first implementation. J. WSCG 22, 329–338 (2014)

    Google Scholar 

  19. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Longman (1999)

    Google Scholar 

  20. Bernard, J., Zeppelzauer, M., Sedlmair, M., Aigner, W.: A unified process for visual-interactive labeling. In: Sedlmair, M., Tominski, C. (eds.) EuroVis Workshop on Visual Analytics (EuroVA), Eurographics (2017). https://doi.org/10.2312/eurova.20171123

  21. Chen, M., Golan, A.: What may visualization processes optimize? IEEE Trans. Vis. Comput. Graph. (TVCG) 22(12), 2619–2632 (2016). https://doi.org/10.1109/TVCG.2015.2513410

    Article  Google Scholar 

  22. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  23. Choo, J., Park, H.: Customizing computational methods for visual analytics with big data. IEEE Comput. Graph. Appl. (CG&A) 33(4), 22–28 (2013)

    Article  Google Scholar 

  24. Craik, K. (ed.): The Nature of Explanation. Cambridge University Press, Cambridge (1943)

    Google Scholar 

  25. Card, S.K., Robertson, G.G., Mackinlay, J.D.: The information visualizer, an information workspace. In: SIGCHI Conference on Human Factors in Computing Systems (CHI). ACM, pp. 181–186 (1991). https://doi.org/10.1145/108844.108874

  26. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. Adaptive Computation and Machine Learning Series. The MIT Press, Cambridge, MA (2006)

    Book  Google Scholar 

  27. Dagli, C.K., Rajaram, S., Huang, T.S.: Leveraging active learning for relevance feedback using an information theoretic diversity measure. In: Conference on Image and Video Retrieval, pp. 123–132. Springer, Berlin (2006). https://doi.org/10.1007/11788034_13

  28. Elmqvist, N., Fekete, J.-D.: Hierarchical aggregation for information visualization: overview, techniques, and design guidelines. IEEE Trans. Vis. Comput. Graph. (TVCG) 16(3), 439–454 (2010). https://doi.org/10.1109/TVCG.2009.84

    Article  Google Scholar 

  29. Endert, A., Fiaux, P., North, C.: Semantic interaction for sensemaking: inferring analytical reasoning for model steering. IEEE Trans. Vis. Comput. Graph. 18(12), 2879–2888 (2012). https://doi.org/10.1109/TVCG.2012.260

    Article  Google Scholar 

  30. Endert, A., Fiaux, P., North, C.: Semantic interaction for visual text analytics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, pp. 473–482. ACM, New York (2012). https://doi.org/10.1145/2207676.2207741

  31. Endert, A., Han, C., Maiti, D., House, L., Leman, S., North, C.: Observation-level interaction with statistical models for visual analytics. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 121–130 (2011). https://doi.org/10.1109/VAST.2011.6102449

  32. Endert, A., Ribarsky, W., Turkay, C., Wong, B.W., Nabney, I., Blanco, I.D., Rossi, F.: The state of the art in integrating machine learning into visual analytics. In: Computer Graphics Forum (CGF) (2017). https://doi.org/10.1111/cgf.13092

  33. Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual comparison for information visualization. Inf. Vis. 10(4), 289–309 (2011). https://doi.org/10.1177/1473871611416549

    Article  Google Scholar 

  34. Grabner, H., Bischof, H.: On-line boosting and vision. In: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, vol. 1, pp. 260–267. IEEE (2006)

  35. Gschwandtner, T., Gärtner, J., Aigner, W., Miksch, S.: A Taxonomy of Dirty Time-Oriented Data, pp. 58–72. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-32498-7_5

    Google Scholar 

  36. Gleicher, M.: A framework for considering comprehensibility in modeling. Big Data 4(2), 75–88 (2016). https://doi.org/10.1089/big.2016.0007

    Article  Google Scholar 

  37. Hoi, S.C., Jin, R., Lyu, M.R.: Large-scale text categorization by batch mode active learning. In: World Wide Web. ACM, pp. 633–642 (2006). https://doi.org/10.1145/1135777.1135870.3

  38. Heimerl, F., Koch, S., Bosch, H., Ertl, T.: Visual classifier training for text document retrieval. IEEE Trans. Vis. Comput. Graph. (TVCG) 18(12), 2839–2848 (2012)

    Article  Google Scholar 

  39. Höferlin, B., Netzel, R., Höferlin, M., Weiskopf, D., Heidemann, G.: Inter-active learning of ad-hoc classifiers for video visual analytics. In: IEEE Visual Analytics Science and Technology (VAST). IEEE, pp. 23–32 (2012). https://doi.org/10.1109/VAST.2012.6400492

  40. Janetzko, H., Sacha, D., Stein, M., Schreck, T., Keim, D.A., Deussen, O.: Feature-driven visual analytics of soccer data. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 13–22 (2014). https://doi.org/10.1109/VAST.2014.7042477

  41. Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual Analytics: Definition, Process, and Challenges, pp. 154–175. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-70956-5_7

    Google Scholar 

  42. Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham, F., Riche, N.H., Weaver, C., Lee, B., Brodbeck, D., Buono, P.: Research directions in data wrangling: visualizations and transformations for usable and credible data. Inf. Vis. 10(4), 271–288 (2011). https://doi.org/10.1177/1473871611415994

    Article  Google Scholar 

  43. Karpinski, M., Macintyre, A.: Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks. J. Comput. Syst. Sci. 54(1), 169–176 (1997). https://doi.org/10.1006/jcss.1997.1477

    Article  MathSciNet  MATH  Google Scholar 

  44. Krause, J., Perer, A., Bertini, E.: Infuse: Interactive feature selection for predictive modeling of high dimensional data. IEEE Trans. Vis. Comput. Graph. (TVCG) 20(12), 1614–1623 (2014). https://doi.org/10.1109/TVCG.2014.2346482

    Article  Google Scholar 

  45. Lewis, J.M., Ackerman, M., de Sa, V.R.: Human cluster evaluation and formal quality measures: a comparative study. In: Annual Meeting of the Cognitive Science Society (CogSci), pp. 1870–1875 (2012)

  46. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  47. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: a review and comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2017). https://doi.org/10.1016/j.neucom.2017.06.084

    Article  Google Scholar 

  48. Liu, T.-Y.: Learning to rank for information retrieval. Found. Trends Inf. Retr. 3(3), 225–331 (2009). https://doi.org/10.1561/1500000016

    Article  Google Scholar 

  49. Liu, Z., Stasko, J.: Mental models, visual reasoning and interaction in information visualization: a top-down perspective. IEEE Trans. Vis. Comput. Graph. 16(6), 999–1008 (2010). https://doi.org/10.1109/TVCG.2010.177

    Article  Google Scholar 

  50. Mamitsuka, N.A.H.: Query learning strategies using boosting and bagging. In: Shavlik, J.W. (ed.) International Conference on Machine Learning (ICML), vol. 1, pp. 1–9. Morgan Kaufmann, Los Altos (1998)

    Google Scholar 

  51. Möhrmann, J., Bernstein, S., Schlegel, T., Werner, G., Heidemann, G.: Improving the usability of interfaces for the interactive semi-automatic labeling of large image data sets. In: Jacko, J.A. (ed.) Human-Computer Interaction. Design and Development Approaches, pp. 618–627. Springer, Berlin (2011)

  52. Mamani, G.M.H., Fatore, F.M., Nonato, L.G., Paulovich, F.V.: User-driven feature space transformation. Comput. Graph. Forum (CGF) 32(3), 291–299 (2013). https://doi.org/10.1111/cgf.12116

    Article  Google Scholar 

  53. Mühlbacher, T., Piringer, H.: A partition-based framework for building and validating regression models. IEEE Trans. Vis. Comput. Graph. (TVCG) 19(12), 1962–1971 (2013). https://doi.org/10.1109/TVCG.2013.125

    Article  Google Scholar 

  54. Mühlbacher, T., Piringer, H., Gratzl, S., Sedlmair, M., Streit, M.: Opening the black box: strategies for increased user involvement in existing algorithm implementations. IEEE Trans. Vis. Comput. Graph. 20(12), 1643–1652 (2014)

    Article  Google Scholar 

  55. Mitrović, D., Zeppelzauer, M., Breiteneder, C.: Features for content-based audio retrieval. Adv. Comput. 78, 71–150 (2010)

    Article  Google Scholar 

  56. Norman, D.A.: The Design of Everyday Things, reprint, paperback edn. Basic Books, New York (2002)

  57. Olsson, F.: A Literature Survey of Active Machine Learning in the Context of Natural Language Processing, Technical report. Swedish Institute of Computer Science (2009)

  58. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  59. Qi, G.-J., Hua, X.-S., Rui, Y., Tang, J., Zhang, H.-J.: Two-dimensional multilabel active learning with an efficient online adaptation model for image classification. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 31(10), 1880–1897 (2009). https://doi.org/10.1109/TPAMI.2008.218

    Article  Google Scholar 

  60. Rauber, P.E., Fadel, S.G., Falcao, A.X., Telea, A.C.: Visualizing the hidden activity of artificial neural networks. IEEE Trans. Vis. Comput. Graph. 23(1), 101–110 (2017)

    Article  Google Scholar 

  61. Riek, L.D., OŠconnor, M.F., Robinson, P.: Guess what? a game for affective annotation of video using crowd sourcing. In: International Conference on Affective Computing and Intelligent Interaction, pp. 277–285. Springer, Berlin (2011)

  62. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1), 157–173 (2008)

    Article  Google Scholar 

  63. Sedlmair, M., Aupetit, M.: Data-driven evaluation of visual quality measures. Comput. Graph. Forum (CGF) 34(3), 201–210 (2015). https://doi.org/10.1111/cgf.12632

    Article  Google Scholar 

  64. Shurkhovetskyy, G., Andrienko, N., Andrienko, G., Fuchs, G.: Data abstraction for visualizing large time series. Comput. Graph. Forum (CGF) (2017). https://doi.org/10.1111/cgf.13237

    Google Scholar 

  65. Seifert, C., Aamir, A., Balagopalan, A., Jain, D., Sharma, A., Grottel, S., Gumhold, S.: Visualizations of Deep Neural Networks in Computer Vision: A Survey, pp. 123–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54024-5_6

    Google Scholar 

  66. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. Read. Inf. Retr. 24, 5 (1997). https://doi.org/10.1002/(SICI)1097-4571(199006)41:4%3c288::AID-ASI8%3e3.0.CO;2-H

    Google Scholar 

  67. Sessler, D., Bernard, J., Kuijper, A., Kohlhammer, J.: Adopting Mental Similarity Notions of Categorical Data Objects to Algorithmic Similarity functions. (2014). Poster Paper. http://www.vmv2014.gcc.tu-darmstadt.de/sites/program.html

  68. Schreck, T., Bernard, J., Von Landesberger, T., Kohlhammer, J.: Visual cluster analysis of trajectory data with interactive kohonen maps. Inf. Vis. 8(1), 14–29 (2009). https://doi.org/10.1057/ivs.2008.29

    Article  Google Scholar 

  69. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Empirical Methods in Natural Language Processing, Computational Linguistics, pp. 1070–1079 (2008)

  70. Settles, B., Craven, M., Ray, S.: Multiple-instance active learning. In: Advances in Neural Information Processing Systems, pp. 1289–1296 (2008)

  71. Settles, B.: Active Learning Literature Survey, Technical Report 1648. University of Wisconsin–Madison (2009)

  72. Settles, B.: Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances. In: Conference on Empirical Methods in Natural Language Processing (EMNLP), Computational Linguistics, pp. 1467–1478 (2011)

  73. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. Seifert, C., Granitzer, M.: User-based active learning. In: IEEE International Conference on Data Mining Workshops, pp. 418–425 (2010). https://doi.org/10.1109/ICDMW.2010.181

  75. Stasko, J., Görg, C., Liu, Z.: Jigsaw: supporting investigative analysis through interactive visualization. Inf. Vis. 7(2), 118–132 (2008). https://doi.org/10.1145/1466620.1466622

    Article  Google Scholar 

  76. Sedlmair, M., Heinzl, C., Bruckner, S., Piringer, H., Möller, T.: Visual parameter space analysis: a conceptual framework. IEEE Trans. Vis. Comput. Graph. (TVCG) 20(12), 2161–2170 (2014). https://doi.org/10.1109/TVCG.2014.2346321

    Article  Google Scholar 

  77. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  78. Sedlmair, M., Meyer, M., Munzner, T.: Design study methodology: reflections from the trenches and the stacks. IEEE Trans. Vis. Comput. Graph (TVCG) 18(12), 2431–2440 (2012). https://doi.org/10.1109/TVCG.2012.213

    Article  Google Scholar 

  79. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Workshop on Computational Learning Theory (COLT), pp. 287–294. ACM, New York (1992). https://doi.org/10.1145/130385.130417

  80. Stolper, C.D., Perer, A., Gotz, D.: Progressive visual analytics: user-driven visual exploration of in-progress analytics. IEEE Trans. Vis. Comput. Graph. 20(12), 1653–1662 (2014)

    Article  Google Scholar 

  81. Sarkar, A., Spott, M., Blackwell, A.F., Jamnik, M.: Visual discovery and model-driven explanation of time series patterns. In: Visual Languages and Human-Centric Computing (VL/HCC). IEEE, pp. 78–86 (2016). https://doi.org/10.1109/VLHCC.2016.7739668

  82. Seebacher, D., Stein, M., Janetzko, H., Keim, D.A.: Patent retrieval: a multi-modal visual analytics approach. In: EuroVis Workshop on Visual Analytics (EuroVA), Eurographics, pp. 013–017 (2016)

  83. Sacha, D., Stoffel, A., Stoffel, F., Kwon, B.C., Ellis, G.P., Keim, D.A.: Knowledge generation model for visual analytics. IEEE Trans. Vis. Comput. Graph. (TVCG) 20(12), 1604–1613 (2014). https://doi.org/10.1109/TVCG.2014.2346481

    Article  Google Scholar 

  84. Sacha, D., Sedlmair, M., Zhang, L., Lee, J.A., Weiskopf, D., North, S.C., Keim, D.A.: Human-centered machine learning through interactive visualization: review and open challenges. In: Artificial Neural Networks, Computational Intelligence and Machine Learning (2016)

  85. Sacha, D., Sedlmair, M., Zhang, L., Lee, J.A., Peltonen, J., Weiskopf, D., North, S.C., Keim, D.A.: What you see is what you can change: human-centered machine learning by interactive visualization. Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2017.01.105. ISSN = 0925-2312

  86. Sacha, D., Zhang, L., Sedlmair, M., Lee, J.A., Peltonen, J., Weiskopf, D., North, S.C., Keim, D.A.: Visual interaction with dimensionality reduction: a structured literature analysis. IEEE Trans. Vis. Comput. Graph. (TVCG) 23(01), 241–250 (2016). https://doi.org/10.1109/TVCG.2016.2598495

    Article  Google Scholar 

  87. Turkay, C., Kaya, E., Balcisoy, S., Hauser, H.: Designing progressive and interactive analytics processes for high-dimensional data analysis. IEEE Trans. Vis. Comput. Graph. (TVCG) 23(1), 131–140 (2017)

    Article  Google Scholar 

  88. Tuia, D., Volpi, M., Copa, L., Kanevski, M., Munoz-Mari, J.: A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 5(3), 606–617 (2011)

    Article  Google Scholar 

  89. Von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: Conference on Human Factors in Computing Systems (SIGCHI), pp. 319–326. ACM (2004)

  90. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Berlin (2013)

    MATH  Google Scholar 

  91. van der Corput, P., van Wijk, J.J.: Comparing personal image collections with picturevis. Comput. Graph. Forum (CGF) 36(3), 295–304 (2017). https://doi.org/10.1111/cgf.13188

    Article  Google Scholar 

  92. van den Elzen, S., van Wijk, J.J.: Baobabview: interactive construction and analysis of decision trees. In: IEEE Visual Analytics Science and Technology (VAST), pp. 151–160 (2011). https://doi.org/10.1109/VAST.2011.6102453

  93. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  94. Vendrig, J., Patras, I., Snoek, C., Worring, M., den Hartog, J., Raaijmakers, S., van Rest, J., van Leeuwen, D.A.: Trec feature extraction by active learning. In: TREC (2002)

  95. Visentini, I., Snidaro, L., Foresti, G.L.: On-line boosted cascade for object detection. In: Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, pp. 1–4. IEEE (2008)

  96. van Wijk, J.J.: The value of visualization. In: VIS 05. IEEE Visualization, 2005, pp. 79–86 (2005). https://doi.org/10.1109/VISUAL.2005.1532781

  97. Wall, E., Das, S., Chawla, R., Kalidindi, B., Brown, E.T., Endert, A.: Podium: ranking data using mixed-initiative visual analytics. IEEE Trans. Vis. Comput. Graph. 24(1), 288–297 (2018)

    Article  Google Scholar 

  98. Wang, M., Hua, X.-S.: Active learning in multimedia annotation and retrieval: a survey. CM Trans. Intell. Syst. Technol. 2(2), 10:1–10:21 (2011). https://doi.org/10.1145/1899412.1899414

    Google Scholar 

  99. Wu, Y., Kozintsev, I., Bouguet, J.-Y., Dulong, C.: Sampling strategies for active learning in personal photo retrieval. In: IEEE International Conference on Multimedia and Expo. IEEE, pp. 529–532 (2006). https://doi.org/10.1109/ICME.2006.262442

  100. Wenskovitch, J., North, C.: Observation-level interaction with clustering and dimension reduction algorithms. In: Workshop on Human-In-the-Loop Data Analytics (HILDA). ACM, pp. 14:1–14:6 (2017). https://doi.org/10.1145/3077257.3077259

  101. Wongsuphasawat, K., Smilkov, D., Wexler, J., Wilson, J., Mané, D., Fritz, D., Krishnan, D., Viégas, F.B., Wattenberg, M.: Visualizing dataflow graphs of deep learning models in tensorflow. IEEE Trans. Vis. Comput. Graph. 24(1), 1–12 (2018). https://doi.org/10.1109/TVCG.2017.2744878

    Article  Google Scholar 

  102. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 3320–3328. Curran Associates Inc, New York (2014)

    Google Scholar 

  103. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding Neural Networks Through Deep Visualization (2015). arXiv preprint arXiv:1506.06579

  104. Yang, L., Jin, R.: Distance metric learning: a comprehensive survey. Mich. State Univ. 2, 2 (2006)

    Google Scholar 

  105. Zeiler, M.D., Fergus, R.: Visualizing and Understanding Convolutional Networks, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Google Scholar 

  106. Zhu, Q., Keogh, E.J.: Using captchas to index cultural artifacts. In: International Symposium on Advances in Intelligent Data Analysis IX, pp. 245–257. Springer, Berlin (2010)

Download references

Acknowledgements

This work is an extended version of a previous EuroVA paper [20] entitled “ A Unified Process for Visual Interactive Labeling.” This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Project No. I 2850, Lead Agency Verfahren (DACH) “Visual Segmentation and Labeling of Multivariate Time Series (VISSECT),” the Austrian Research Promotion Agency (FFG), Project Nos. 7179681, 7189193, the Austrian Ministry for Transport, Innovation and Technology under the initiative “ICT of the future” via the project “VALiD” (Project No. 845598), the Austrian Research Fund (FWF) via the projects “KAVA-Time” (Project No. P25489-N23), and “VisOnFire” (Project No. P27975-NBL), as well as by the Lower Austrian Research and Education Company and the Provincial Government of Lower Austria (NFB), Department of Science and Research via the project “IntelliGait” (Project No. LSC14-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bernard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, J., Zeppelzauer, M., Sedlmair, M. et al. VIAL: a unified process for visual interactive labeling. Vis Comput 34, 1189–1207 (2018). https://doi.org/10.1007/s00371-018-1500-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1500-3

Keywords

Navigation