Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparison of Hypervolume, IGD and IGD+ from the Viewpoint of Optimal Distributions of Solutions

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11411))

Included in the following conference series:

Abstract

Hypervolume (HV) and inverted generational distance (IGD) have been frequently used as performance indicators to evaluate the quality of solution sets obtained by evolutionary multiobjective optimization (EMO) algorithms. They have also been used in indicator-based EMO algorithms. In some studies on many-objective problems, only the IGD indicator was used due to a large computation load of HV calculation. However, the IGD indicator is not Pareto compliant. This means that a better solution set in terms of the Pareto dominance relation can be evaluated as being worse. Recently the IGD plus (IGD+) indicator has been proposed as a weakly Pareto compliant version of IGD. In this paper, we compare these three indicators from the viewpoint of optimal distributions of solutions. More specifically, we visually demonstrate similarities and differences among the three indicators by numerically calculating near-optimal distributions of solutions to optimize each indicator for some test problems. Our numerical analysis shows that IGD+ is more similar to HV than IGD whereas the formulations of IGD and IGD+ are almost the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective optimization: theoretical foundations and practical implications. Theoret. Comput. Sci. 425, 75–103 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19, 45–76 (2011)

    Article  Google Scholar 

  3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181, 1653–1669 (2007)

    Article  Google Scholar 

  4. Brockhoff, D.: Optimal μ-distributions for the hypervolume indicator for problems with linear bi-objective fronts: exact and exhaustive results. In: Deb, K., et al. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 24–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17298-4_2

    Chapter  Google Scholar 

  5. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS, vol. 2972, pp. 688–697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7_71

    Chapter  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18, 577–601 (2014)

    Article  Google Scholar 

  8. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of IEEE CEC 2002, pp. 825–830 (2002)

    Google Scholar 

  9. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_5

    Chapter  MATH  Google Scholar 

  10. Emmerich, M., Deutz, A., Beume, N.: Gradient-based/evolutionary relay hybrid for computing Pareto front approximations maximizing the S-metric. In: Bartz-Beielstein, T., et al. (eds.) HM 2007. LNCS, vol. 4771, pp. 140–156. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75514-2_11

    Chapter  Google Scholar 

  11. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10, 477–506 (2006)

    Article  Google Scholar 

  12. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Hypervolume subset selection for triangular and inverted triangular Pareto fronts of three-objective problems. In: Proceedings of FOGA 2017, pp. 95–110 (2017)

    Google Scholar 

  13. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: How to specify a reference point in hypervolume calculation for fair performance comparison. Evol. Comput. 26, 411–440 (2018)

    Article  Google Scholar 

  14. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Reference point specification in inverted generational distance for triangular linear Pareto front. IEEE Trans. Evol. Comput. 22, 961–975 (2018)

    Article  Google Scholar 

  15. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Chapter  Google Scholar 

  16. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of decomposition based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21, 169–190 (2017)

    Article  Google Scholar 

  17. Jain, H., Deb, K.: An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 307–321. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37140-0_25

    Chapter  Google Scholar 

  18. Jiang, S.W., Ong, Y.-S., Zhang, J., Feng, L.: Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44, 2391–2404 (2014)

    Article  Google Scholar 

  19. Jiang, S.W., Zhang, J., Ong, Y.-S., Zhang, A.N., Tan, P.S.: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 45, 2202–2213 (2015)

    Article  Google Scholar 

  20. Lopez, E.M., Coello Coello, C.A.: An improved version of a reference-based multi-objective evolutionary algorithm based on IGD+. In: Proceedings of GECCO 2018, pp. 713–720 (2018)

    Google Scholar 

  21. Ravber, M., Mernik, M., Crepinkek, M.: The impact of quality indicators on the rating of multi-objective evolutionary algorithms. Appl. Soft Comput. 55, 265–275 (2017)

    Article  Google Scholar 

  22. Sierra, M.R., Coello Coello, C.A.: A new multi-objective particle swarm optimizer with improved selection and diversity mechanisms. Technical report. CINVESTAV-IPN (2004)

    Google Scholar 

  23. Sun, Y., Yen, G.G., Yi, Z.: IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. (Early Access Paper: Online Available)

    Google Scholar 

  24. Tian, Y., Cheng, R., Zhang, X.Y., Cheng, F., Jin, Y.C.: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evol. Comput. 22, 609–622 (2018)

    Article  Google Scholar 

  25. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_56

    Chapter  Google Scholar 

  26. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

    Article  Google Scholar 

  27. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of Pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_64

    Chapter  Google Scholar 

  28. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056872

    Chapter  Google Scholar 

  29. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 61876075), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07X386), Shenzhen Peacock Plan (Grant No. KQTD2016112514355531), the Science and Technology Innovation Committee Foundation of Shenzhen (Grant No. ZDSYS201703031748284), and the Program for University Key Laboratory of Guangdong Province (Grant No. 2017KSYS008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Ishibuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishibuchi, H., Imada, R., Masuyama, N., Nojima, Y. (2019). Comparison of Hypervolume, IGD and IGD+ from the Viewpoint of Optimal Distributions of Solutions. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics