Nothing Special   »   [go: up one dir, main page]

Skip to main content

Finding Dense Subgraphs with Size Bounds

  • Conference paper
Algorithms and Models for the Web-Graph (WAW 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5427))

Included in the following conference series:

Abstract

We consider the problem of finding dense subgraphs with specified upper or lower bounds on the number of vertices. We introduce two optimization problems: the densest at-least-k-subgraph problem (dalks), which is to find an induced subgraph of highest average degree among all subgraphs with at least k vertices, and the densest at-most-k-subgraph problem (damks), which is defined similarly. These problems are relaxed versions of the well-known densest k-subgraph problem (dks), which is to find the densest subgraph with exactly k vertices. Our main result is that dalks can be approximated efficiently, even for web-scale graphs. We give a (1/3)-approximation algorithm for dalks that is based on the core decomposition of a graph, and that runs in time O(m + n), where n is the number of nodes and m is the number of edges. In contrast, we show that damks is nearly as hard to approximate as the densest k-subgraph problem, for which no good approximation algorithm is known. In particular, we show that if there exists a polynomial time approximation algorithm for damks with approximation ratio γ, then there is a polynomial time approximation algorithm for dks with approximation ratio γ 2/8. In the experimental section, we test the algorithm for dalks on large publicly available web graphs. We observe that, in addition to producing near-optimal solutions for dalks, the algorithm also produces near-optimal solutions for dks for nearly all values of k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abello, J., Resende, M.G.C., Sudarsky, R.: Massive quasi-clique detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 598–612. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. Advances in Neural Information Processing Systems 18, 41–50 (2006)

    Google Scholar 

  3. Andersen, R.: A local algorithm for finding dense subgraphs. In: Proc. 19th ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 1003–1009 (2008)

    Google Scholar 

  4. Arora, S., Karger, D., Karpinski, M.: Polynomial time approximation schemes for dense instances of NP-hard problems. In: Proc. 27th ACM Symposium on Theory of Computing (STOC 1995), pp. 284–293 (1995)

    Google Scholar 

  5. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Discrete Appl. Math. 121(1-3), 15–26 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense subgraph. J. Algorithms 34(2), 203–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph compression with communities. In: WSDM 2008: Proceedings of the international conference on web search and web data mining, pp. 95–106 (2008)

    Google Scholar 

  9. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and classification of dense communities in the web. In: WWW 2007: Proceedings of the 16th international conference on World Wide Web, pp. 461–470 (2007)

    Google Scholar 

  10. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feige, U., Seltser, M.: On the densest k-subgraph problem, Technical report, Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehobot (1997)

    Google Scholar 

  13. Gallo, G., Grigoriadis, M., Tarjan, R.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: Proc. 31st VLDB Conference (2005)

    Google Scholar 

  15. Goldberg, A.: Finding a maximum density subgraph, Technical Report UCB/CSB 84/171, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA (1984)

    Google Scholar 

  16. Kannan, R., Vinay, V.: Analyzing the structure of large graphs (manuscript) (1999)

    Google Scholar 

  17. Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM Journal on Computing 36(4), 1025–1071 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seidman, S.B.: Network structure and minimum degree. Social Networks 5, 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  20. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the Web for emerging cyber-communities. In: Proc. 8th WWW Conference (WWW 1999) (1999)

    Google Scholar 

  21. Wuchty, S., Almaas, E.: Peeling the yeast protein network. Proteomics 5, 444 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andersen, R., Chellapilla, K. (2009). Finding Dense Subgraphs with Size Bounds. In: Avrachenkov, K., Donato, D., Litvak, N. (eds) Algorithms and Models for the Web-Graph. WAW 2009. Lecture Notes in Computer Science, vol 5427. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95995-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95995-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95994-6

  • Online ISBN: 978-3-540-95995-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics