@inproceedings{wen-etal-2024-learning,
title = "Learning Task Decomposition to Assist Humans in Competitive Programming",
author = "Wen, Jiaxin and
Zhong, Ruiqi and
Ke, Pei and
Shao, Zhihong and
Wang, Hongning and
Huang, Minlie",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.629",
doi = "10.18653/v1/2024.acl-long.629",
pages = "11700--11723",
abstract = "When using language models (LMs) to solve complex problems, humans might struggle to understand the LM-generated solutions and repair the flawed ones. To assist humans in repairing them, we propose to automatically decompose complex solutions into multiple simpler pieces that correspond to specific subtasks. We introduce a novel objective for learning task decomposition, termed assistive value (AssistV), which measures the feasibility and speed for humans to repair the decomposed solution. We collect a dataset of human repair experiences on different decomposed solutions. Utilizing the collected data as in-context examples, we then learn to critique, refine, and rank decomposed solutions to improve AssistV. We validate our method under competitive programming problems: under 177 hours of human study, our method enables non-experts to solve 33.3{\%} more problems, speeds them up by 3.3x, and empowers them to match unassisted experts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wen-etal-2024-learning">
<titleInfo>
<title>Learning Task Decomposition to Assist Humans in Competitive Programming</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiaxin</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruiqi</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pei</namePart>
<namePart type="family">Ke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihong</namePart>
<namePart type="family">Shao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongning</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minlie</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>When using language models (LMs) to solve complex problems, humans might struggle to understand the LM-generated solutions and repair the flawed ones. To assist humans in repairing them, we propose to automatically decompose complex solutions into multiple simpler pieces that correspond to specific subtasks. We introduce a novel objective for learning task decomposition, termed assistive value (AssistV), which measures the feasibility and speed for humans to repair the decomposed solution. We collect a dataset of human repair experiences on different decomposed solutions. Utilizing the collected data as in-context examples, we then learn to critique, refine, and rank decomposed solutions to improve AssistV. We validate our method under competitive programming problems: under 177 hours of human study, our method enables non-experts to solve 33.3% more problems, speeds them up by 3.3x, and empowers them to match unassisted experts.</abstract>
<identifier type="citekey">wen-etal-2024-learning</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.629</identifier>
<location>
<url>https://aclanthology.org/2024.acl-long.629</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>11700</start>
<end>11723</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Task Decomposition to Assist Humans in Competitive Programming
%A Wen, Jiaxin
%A Zhong, Ruiqi
%A Ke, Pei
%A Shao, Zhihong
%A Wang, Hongning
%A Huang, Minlie
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F wen-etal-2024-learning
%X When using language models (LMs) to solve complex problems, humans might struggle to understand the LM-generated solutions and repair the flawed ones. To assist humans in repairing them, we propose to automatically decompose complex solutions into multiple simpler pieces that correspond to specific subtasks. We introduce a novel objective for learning task decomposition, termed assistive value (AssistV), which measures the feasibility and speed for humans to repair the decomposed solution. We collect a dataset of human repair experiences on different decomposed solutions. Utilizing the collected data as in-context examples, we then learn to critique, refine, and rank decomposed solutions to improve AssistV. We validate our method under competitive programming problems: under 177 hours of human study, our method enables non-experts to solve 33.3% more problems, speeds them up by 3.3x, and empowers them to match unassisted experts.
%R 10.18653/v1/2024.acl-long.629
%U https://aclanthology.org/2024.acl-long.629
%U https://doi.org/10.18653/v1/2024.acl-long.629
%P 11700-11723
Markdown (Informal)
[Learning Task Decomposition to Assist Humans in Competitive Programming](https://aclanthology.org/2024.acl-long.629) (Wen et al., ACL 2024)
ACL
- Jiaxin Wen, Ruiqi Zhong, Pei Ke, Zhihong Shao, Hongning Wang, and Minlie Huang. 2024. Learning Task Decomposition to Assist Humans in Competitive Programming. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11700–11723, Bangkok, Thailand. Association for Computational Linguistics.