@inproceedings{botschen-etal-2017-prediction,
title = "Prediction of Frame-to-Frame Relations in the {F}rame{N}et Hierarchy with Frame Embeddings",
author = "Botschen, Teresa and
Mousselly-Sergieh, Hatem and
Gurevych, Iryna",
editor = "Blunsom, Phil and
Bordes, Antoine and
Cho, Kyunghyun and
Cohen, Shay and
Dyer, Chris and
Grefenstette, Edward and
Hermann, Karl Moritz and
Rimell, Laura and
Weston, Jason and
Yih, Scott",
booktitle = "Proceedings of the 2nd Workshop on Representation Learning for {NLP}",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2618",
doi = "10.18653/v1/W17-2618",
pages = "146--156",
abstract = "Automatic completion of frame-to-frame (F2F) relations in the FrameNet (FN) hierarchy has received little attention, although they incorporate meta-level commonsense knowledge and are used in downstream approaches. We address the problem of sparsely annotated F2F relations. First, we examine whether the manually defined F2F relations emerge from text by learning text-based frame embeddings. Our analysis reveals insights about the difficulty of reconstructing F2F relations purely from text. Second, we present different systems for predicting F2F relations; our best-performing one uses the FN hierarchy to train on and to ground embeddings in. A comparison of systems and embeddings exposes the crucial influence of knowledge-based embeddings to a system{'}s performance in predicting F2F relations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="botschen-etal-2017-prediction">
<titleInfo>
<title>Prediction of Frame-to-Frame Relations in the FrameNet Hierarchy with Frame Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Teresa</namePart>
<namePart type="family">Botschen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hatem</namePart>
<namePart type="family">Mousselly-Sergieh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Representation Learning for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Phil</namePart>
<namePart type="family">Blunsom</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antoine</namePart>
<namePart type="family">Bordes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghyun</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shay</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Dyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="family">Grefenstette</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karl</namePart>
<namePart type="given">Moritz</namePart>
<namePart type="family">Hermann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Rimell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jason</namePart>
<namePart type="family">Weston</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic completion of frame-to-frame (F2F) relations in the FrameNet (FN) hierarchy has received little attention, although they incorporate meta-level commonsense knowledge and are used in downstream approaches. We address the problem of sparsely annotated F2F relations. First, we examine whether the manually defined F2F relations emerge from text by learning text-based frame embeddings. Our analysis reveals insights about the difficulty of reconstructing F2F relations purely from text. Second, we present different systems for predicting F2F relations; our best-performing one uses the FN hierarchy to train on and to ground embeddings in. A comparison of systems and embeddings exposes the crucial influence of knowledge-based embeddings to a system’s performance in predicting F2F relations.</abstract>
<identifier type="citekey">botschen-etal-2017-prediction</identifier>
<identifier type="doi">10.18653/v1/W17-2618</identifier>
<location>
<url>https://aclanthology.org/W17-2618</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>146</start>
<end>156</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Prediction of Frame-to-Frame Relations in the FrameNet Hierarchy with Frame Embeddings
%A Botschen, Teresa
%A Mousselly-Sergieh, Hatem
%A Gurevych, Iryna
%Y Blunsom, Phil
%Y Bordes, Antoine
%Y Cho, Kyunghyun
%Y Cohen, Shay
%Y Dyer, Chris
%Y Grefenstette, Edward
%Y Hermann, Karl Moritz
%Y Rimell, Laura
%Y Weston, Jason
%Y Yih, Scott
%S Proceedings of the 2nd Workshop on Representation Learning for NLP
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F botschen-etal-2017-prediction
%X Automatic completion of frame-to-frame (F2F) relations in the FrameNet (FN) hierarchy has received little attention, although they incorporate meta-level commonsense knowledge and are used in downstream approaches. We address the problem of sparsely annotated F2F relations. First, we examine whether the manually defined F2F relations emerge from text by learning text-based frame embeddings. Our analysis reveals insights about the difficulty of reconstructing F2F relations purely from text. Second, we present different systems for predicting F2F relations; our best-performing one uses the FN hierarchy to train on and to ground embeddings in. A comparison of systems and embeddings exposes the crucial influence of knowledge-based embeddings to a system’s performance in predicting F2F relations.
%R 10.18653/v1/W17-2618
%U https://aclanthology.org/W17-2618
%U https://doi.org/10.18653/v1/W17-2618
%P 146-156
Markdown (Informal)
[Prediction of Frame-to-Frame Relations in the FrameNet Hierarchy with Frame Embeddings](https://aclanthology.org/W17-2618) (Botschen et al., RepL4NLP 2017)
ACL