@inproceedings{nozza-etal-2017-twine,
title = "{TWINE}: A real-time system for {TW}eet analysis via {IN}formation Extraction",
author = "Nozza, Debora and
Ristagno, Fausto and
Palmonari, Matteo and
Fersini, Elisabetta and
Manchanda, Pikakshi and
Messina, Enza",
editor = "Martins, Andr{\'e} and
Pe{\~n}as, Anselmo",
booktitle = "Proceedings of the Software Demonstrations of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/E17-3007",
pages = "25--28",
abstract = "In the recent years, the amount of user generated contents shared on the Web has significantly increased, especially in social media environment, e.g. Twitter, Facebook, Google+. This large quantity of data has generated the need of reactive and sophisticated systems for capturing and understanding the underlying information enclosed in them. In this paper we present TWINE, a real-time system for the big data analysis and exploration of information extracted from Twitter streams. The proposed system based on a Named Entity Recognition and Linking pipeline and a multi-dimensional spatial geo-localization is managed by a scalable and flexible architecture for an interactive visualization of micropost streams insights. The demo is available at \url{http://twine-mind.cloudapp.net/streaming}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nozza-etal-2017-twine">
<titleInfo>
<title>TWINE: A real-time system for TWeet analysis via INformation Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Debora</namePart>
<namePart type="family">Nozza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fausto</namePart>
<namePart type="family">Ristagno</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matteo</namePart>
<namePart type="family">Palmonari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisabetta</namePart>
<namePart type="family">Fersini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pikakshi</namePart>
<namePart type="family">Manchanda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enza</namePart>
<namePart type="family">Messina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anselmo</namePart>
<namePart type="family">Peñas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Valencia, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the recent years, the amount of user generated contents shared on the Web has significantly increased, especially in social media environment, e.g. Twitter, Facebook, Google+. This large quantity of data has generated the need of reactive and sophisticated systems for capturing and understanding the underlying information enclosed in them. In this paper we present TWINE, a real-time system for the big data analysis and exploration of information extracted from Twitter streams. The proposed system based on a Named Entity Recognition and Linking pipeline and a multi-dimensional spatial geo-localization is managed by a scalable and flexible architecture for an interactive visualization of micropost streams insights. The demo is available at http://twine-mind.cloudapp.net/streaming.</abstract>
<identifier type="citekey">nozza-etal-2017-twine</identifier>
<location>
<url>https://aclanthology.org/E17-3007</url>
</location>
<part>
<date>2017-04</date>
<extent unit="page">
<start>25</start>
<end>28</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TWINE: A real-time system for TWeet analysis via INformation Extraction
%A Nozza, Debora
%A Ristagno, Fausto
%A Palmonari, Matteo
%A Fersini, Elisabetta
%A Manchanda, Pikakshi
%A Messina, Enza
%Y Martins, André
%Y Peñas, Anselmo
%S Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics
%D 2017
%8 April
%I Association for Computational Linguistics
%C Valencia, Spain
%F nozza-etal-2017-twine
%X In the recent years, the amount of user generated contents shared on the Web has significantly increased, especially in social media environment, e.g. Twitter, Facebook, Google+. This large quantity of data has generated the need of reactive and sophisticated systems for capturing and understanding the underlying information enclosed in them. In this paper we present TWINE, a real-time system for the big data analysis and exploration of information extracted from Twitter streams. The proposed system based on a Named Entity Recognition and Linking pipeline and a multi-dimensional spatial geo-localization is managed by a scalable and flexible architecture for an interactive visualization of micropost streams insights. The demo is available at http://twine-mind.cloudapp.net/streaming.
%U https://aclanthology.org/E17-3007
%P 25-28
Markdown (Informal)
[TWINE: A real-time system for TWeet analysis via INformation Extraction](https://aclanthology.org/E17-3007) (Nozza et al., EACL 2017)
ACL
- Debora Nozza, Fausto Ristagno, Matteo Palmonari, Elisabetta Fersini, Pikakshi Manchanda, and Enza Messina. 2017. TWINE: A real-time system for TWeet analysis via INformation Extraction. In Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics, pages 25–28, Valencia, Spain. Association for Computational Linguistics.