@inproceedings{silfverberg-hulden-2018-encoder,
title = "An Encoder-Decoder Approach to the Paradigm Cell Filling Problem",
author = "Silfverberg, Miikka and
Hulden, Mans",
editor = "Riloff, Ellen and
Chiang, David and
Hockenmaier, Julia and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
month = oct # "-" # nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/D18-1315",
doi = "10.18653/v1/D18-1315",
pages = "2883--2889",
abstract = "The Paradigm Cell Filling Problem in morphology asks to complete word inflection tables from partial ones. We implement novel neural models for this task, evaluating them on 18 data sets in 8 languages, showing performance that is comparable with previous work with far less training data. We also publish a new dataset for this task and code implementing the system described in this paper.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="silfverberg-hulden-2018-encoder">
<titleInfo>
<title>An Encoder-Decoder Approach to the Paradigm Cell Filling Problem</title>
</titleInfo>
<name type="personal">
<namePart type="given">Miikka</namePart>
<namePart type="family">Silfverberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mans</namePart>
<namePart type="family">Hulden</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-oct-nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Riloff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Chiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hockenmaier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun’ichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The Paradigm Cell Filling Problem in morphology asks to complete word inflection tables from partial ones. We implement novel neural models for this task, evaluating them on 18 data sets in 8 languages, showing performance that is comparable with previous work with far less training data. We also publish a new dataset for this task and code implementing the system described in this paper.</abstract>
<identifier type="citekey">silfverberg-hulden-2018-encoder</identifier>
<identifier type="doi">10.18653/v1/D18-1315</identifier>
<location>
<url>https://aclanthology.org/D18-1315</url>
</location>
<part>
<date>2018-oct-nov</date>
<extent unit="page">
<start>2883</start>
<end>2889</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Encoder-Decoder Approach to the Paradigm Cell Filling Problem
%A Silfverberg, Miikka
%A Hulden, Mans
%Y Riloff, Ellen
%Y Chiang, David
%Y Hockenmaier, Julia
%Y Tsujii, Jun’ichi
%S Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
%D 2018
%8 oct nov
%I Association for Computational Linguistics
%C Brussels, Belgium
%F silfverberg-hulden-2018-encoder
%X The Paradigm Cell Filling Problem in morphology asks to complete word inflection tables from partial ones. We implement novel neural models for this task, evaluating them on 18 data sets in 8 languages, showing performance that is comparable with previous work with far less training data. We also publish a new dataset for this task and code implementing the system described in this paper.
%R 10.18653/v1/D18-1315
%U https://aclanthology.org/D18-1315
%U https://doi.org/10.18653/v1/D18-1315
%P 2883-2889
Markdown (Informal)
[An Encoder-Decoder Approach to the Paradigm Cell Filling Problem](https://aclanthology.org/D18-1315) (Silfverberg & Hulden, EMNLP 2018)
ACL